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Verification Calculus for Differential Dynamic Logic
Propositional Rules

10 propositional rules

` φ
¬φ `

φ `
` ¬φ

φ ` ψ
` φ→ ψ

φ, ψ `
φ ∧ ψ `

` φ ` ψ
` φ ∧ ψ

` φ ψ `
φ→ ψ `

φ ` ψ `
φ ∨ ψ `

` φ, ψ
` φ ∨ ψ

φ ` φ

` φ φ `
`
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Verification Calculus for Differential Dynamic Logic
Dynamic Rules

〈α〉〈β〉φ
〈α;β〉φ

[α][β]φ

[α;β]φ

〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

[α]φ ∧ [β]φ

[α ∪ β]φ

φ ∨ 〈α〉〈α∗〉φ
〈α∗〉φ

φ ∧ [α][α∗]φ

[α∗]φ

χ ∧ ψ
〈?χ〉ψ

χ→ ψ

[?χ]ψ

φθ1
x1
. . .θnxn

〈x1 := θ1, . . , xn := θn〉φ

〈x1 := θ1, . . , xn := θn〉φ
[x1 := θ1, . . , xn := θn]φ

∃t≥0
(
(∀0≤t̃≤t 〈S(t̃)〉χ) ∧ 〈S(t)〉φ

)
〈x ′1 = θ1, . . , x ′n = θn ∧ χ〉φ

∀t≥0
(
(∀0≤t̃≤t 〈S(t̃)〉χ)→ 〈S(t)〉φ

)
[x ′1 = θ1, . . , x ′n = θn ∧ χ]φ
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Verification Calculus for Differential Dynamic Logic
First-Order Rules

` φ(s(X1, . . ,Xn))

` ∀x φ(x)

φ(s(X1, . . ,Xn)) `
∃x φ(x) `

s new, {X1, . . ,Xn} = FV (∃x φ(x))

` QE(∀X (Φ(X ) ` Ψ(X )))

Φ(s(X1, . . ,Xn)) ` Ψ(s(X1, . . ,Xn))

X new variable

` φ(X )

` ∃x φ(x)

φ(X ) `
∀x φ(x) `

X new variable

` QE(∃X
∧

i (Φi ` Ψi ))

Φ1 ` Ψ1 . . . Φn ` Ψn

X only in branches Φi ` Ψi

QE needs to be defined in premiss
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Verification Calculus for Differential Dynamic Logic
Global Dynamic Rules

` ∀α(φ→ ψ)

[α]φ ` [α]ψ

` ∀α(φ→ ψ)

〈α〉φ ` 〈α〉ψ
` ∀α(φ→ [α]φ)

φ ` [α∗]φ

` ∀α∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)
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Soundness

Theorem (Soundness)

dL calculus is sound, i.e.,
` φ ⇒ � φ

Challenges (Soundness Proof)

x ′ = f (x)

Side deductions

Free variables & Skolemization
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Free Variables, Models, and Consequences

Definition (Model Consequence)

ψ consequence of φ iff, for every I , v there is a η such that I , η, v |= ψ,
provided that, for every I , v there is a η such that I , η, v |= φ.

Definition (Soundness)

Calculus rule sound iff conclusions Ψ consequence of premisses Φ.

Φ

Ψ
sound iff Ψ consequence of Φ

Definition (Tableau Model)

Formula F has model iff there is I , v such that for all variable
assignments η we have I , η, v |= φ.
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André Platzer (CMU) LAHS/26: Soundness of Proof Rules 7 / 19

http://symbolaris.com/meta/andre.html
http://symbolaris.com/meta/andre.html
http://symbolaris.com/lahs/


Free Variables, Models, and Consequences

Definition (Model Consequence)

ψ consequence of φ iff, for every I , v there is a η such that I , η, v |= ψ,
provided that, for every I , v there is a η such that I , η, v |= φ.

Definition (Soundness)

Calculus rule sound iff conclusions Ψ consequence of premisses Φ.

Φ

Ψ
sound iff Ψ consequence of Φ
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Free Variables, Models, and Consequences

Definition (Model Consequence)

ψ consequence of φ iff, for every I , v there is a η such that I , η, v |= ψ,
provided that, for every I , v there is a η such that I , η, v |= φ.

Definition (Soundness)

Calculus rule sound iff conclusions Ψ consequence of premisses Φ.

Φ1 . . . Φn

Ψ1 . . . Ψm

Ψ1 ∧ · · · ∧Ψm consequence of Φ1 ∧ · · · ∧ Φn
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Free Variables, Models, and Consequences
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Φ1 . . . Φn

Ψ1 . . . Ψm
Ψ1 ∧ · · · ∧Ψm consequence of Φ1 ∧ · · · ∧ Φn

⇑ / ⇓?

Definition (Local Soundness)

Φ

Ψ
locally sound iff for each I , η, v (I , η, v |= Φ ⇒ I , η, v |= Ψ)
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Local Application of Local Soundness in Context

Definition (Local Soundness)

Φ′ ` Ψ′

Φ ` Ψ
locally sound iff

for each I , η, v
(
I , η, v |= Φ′ ` Ψ′ ⇒ I , η, v |= Φ ` Ψ

)

⇓

Lemma (Local application context lifting)

If α is a deterministic HP, then

Φ′ ` Ψ′

Φ ` Ψ
locally sound ⇒

Γ, 〈α〉Φ′ ` 〈α〉Ψ′,∆
Γ, 〈α〉Φ ` 〈α〉Ψ,∆

locally sound
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Soundness Proof

φθ1
x1
. . .θnxn

〈x1 := θ1, . . , xn := θn〉φ

Proof (〈:=〉 locally sound).

Assume premiss holds in I , η, v , i.e., I , η, v |= φθ1
x1
. . .θnxn .

Show I , η, v |= 〈x1 := θ1, . . , xn := θn〉φ,

i.e., I , η, ω |= φ for a state ω with (v , ω) ∈ ρI ,η(x1 := θ1, . . , xn := θn).

Follows from substitution lemma, which generalises to dynamic logic
for admissible substitutions.
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Soundness Proof

∃t≥0
(
(∀0≤t̃≤t 〈S(t̃)〉χ) ∧ 〈S(t)〉φ

)
〈x ′1 = θ1, . . , x ′n = θn ∧ χ〉φ

where
χ̄≡ ∀0≤t̃≤t 〈S(t̃)〉χ
D≡ x ′1 = θ1, . . , x

′
n = θn ∧ χ

Proof (〈x ′〉 locally sound).

Let y1, . . . , yn solve ODE x ′1 = θ1, . . . , x
′
n = θn with IV x1, . . . , xn.

Let 〈S(t)〉 be 〈x1 := y1(t), . . . , xn := yn(t)〉.
Assume premiss holds: I , η, v |= ∃t≥0 (χ̄ ∧ 〈S(t)〉φ)

By assumption, there is a r ≥ 0 such that I , ηrt , v |= χ̄ ∧ 〈S(t)〉φ.

We have to show I , η, v |= 〈D〉φ.

Equivalently, by coincidence lemma, I , ηrt , v |= 〈D〉φ, because t fresh.

Let f : [0, r ]→ States such that (v , f (ζ)) ∈ ρ
I ,ηζt

(S(t)) for all

ζ ∈ [0, r ]. By premiss, f (0) = v and φ holds at f (r).

It only remains to show that f is a flow for ρI ,η(D).

f continuous and differentiable according to yi .

Moreover, [[xi ]]I ,f (ζ),ηrt
= [[yi (t)]]I ,v ,ηrt has a derivative of value

[[θi ]]I ,f (ζ),ηrt
, because yi is a solution of the differential

equation x ′i = θi with corresponding initial value v(xi ).

Further, evolution invariant region χ is respected along f :

By premiss, I , ηrt , v |= χ̄ holds for the initial state v , thus
[[χ]]I ,f (ζ),ηrt

= true for all ζ ∈ [0, r ].

In short, f is a witness for I , η, v |= 〈D〉φ.

Converse direction can be shown to prove the dual rule [x ′] using that
flows are unique.
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André Platzer (CMU) LAHS/26: Soundness of Proof Rules 10 / 19

http://symbolaris.com/meta/andre.html
http://symbolaris.com/meta/andre.html
http://symbolaris.com/lahs/


Soundness Proof

∃t≥0
(
(∀0≤t̃≤t 〈S(t̃)〉χ) ∧ 〈S(t)〉φ

)
〈x ′1 = θ1, . . , x ′n = θn ∧ χ〉φ

where
χ̄≡ ∀0≤t̃≤t 〈S(t̃)〉χ
D≡ x ′1 = θ1, . . , x

′
n = θn ∧ χ

Proof (〈x ′〉 locally sound).

Let y1, . . . , yn solve ODE x ′1 = θ1, . . . , x
′
n = θn with IV x1, . . . , xn.

Let 〈S(t)〉 be 〈x1 := y1(t), . . . , xn := yn(t)〉.
Assume premiss holds: I , η, v |= ∃t≥0 (χ̄ ∧ 〈S(t)〉φ)

By assumption, there is a r ≥ 0 such that I , ηrt , v |= χ̄ ∧ 〈S(t)〉φ.

We have to show I , η, v |= 〈D〉φ.

Equivalently, by coincidence lemma, I , ηrt , v |= 〈D〉φ, because t fresh.

Let f : [0, r ]→ States such that (v , f (ζ)) ∈ ρ
I ,ηζt

(S(t)) for all

ζ ∈ [0, r ]. By premiss, f (0) = v and φ holds at f (r).

It only remains to show that f is a flow for ρI ,η(D).

f continuous and differentiable according to yi .

Moreover, [[xi ]]I ,f (ζ),ηrt
= [[yi (t)]]I ,v ,ηrt has a derivative of value

[[θi ]]I ,f (ζ),ηrt
, because yi is a solution of the differential

equation x ′i = θi with corresponding initial value v(xi ).

Further, evolution invariant region χ is respected along f :

By premiss, I , ηrt , v |= χ̄ holds for the initial state v , thus
[[χ]]I ,f (ζ),ηrt

= true for all ζ ∈ [0, r ].

In short, f is a witness for I , η, v |= 〈D〉φ.

Converse direction can be shown to prove the dual rule [x ′] using that
flows are unique.
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Soundness Proof

` φ(s(X1, . . ,Xn))

` ∀x φ(x)

Proof (∀r sound).

Contrapositively, assume there are I , v such that for all η,
I , η, v 6|= ∀x φ(x), hence I , η, v |= ∃x ¬φ(x).

Construct I ′ that agrees with I except for new function symbol s.

For any b1, . . . , bn ∈ R let ηb assign bi to Xi for 1 ≤ i ≤ n.

As I , η, v |= ∃x ¬φ(x) holds for all η, we pick a witness d for
I , ηb, v |= ∃x ¬φ(x) and choose I ′(s)(b1, . . . , bn) = d .

We have I ′, η, v 6|= φ(s(X1, . . . ,Xn)) for all η by coincidence lemma,
as X1, . . ,Xn are all FV determining truth value of φ(s(X1, . . . ,Xn)).

Γ,∆, 〈J 〉 can be added: Since s is new, Γ,∆ do not change truth
value by passing from I to I ′. Further s is rigid and does not change
value by adding jump prefix 〈J 〉.
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I , η, v 6|= ∀x φ(x), hence I , η, v |= ∃x ¬φ(x).

Construct I ′ that agrees with I except for new function symbol s.

For any b1, . . . , bn ∈ R let ηb assign bi to Xi for 1 ≤ i ≤ n.

As I , η, v |= ∃x ¬φ(x) holds for all η, we pick a witness d for
I , ηb, v |= ∃x ¬φ(x) and choose I ′(s)(b1, . . . , bn) = d .
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value by passing from I to I ′. Further s is rigid and does not change
value by adding jump prefix 〈J 〉.
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Soundness Proof

` QE(∀X (Φ(X ) ` Ψ(X )))

Φ(s(X1, . . ,Xn)) ` Ψ(s(X1, . . ,Xn))

X new variable

Proof (i∀ locally sound).

Assume I , η, v |= QE(∀X (Φ(X ) ` Ψ(X ))).

QE yields an equivalence, thus I , η, v |= ∀X (Φ(X ) ` Ψ(X )).

If I , η, v |= Φ(s(X1, . . . ,Xn)), we conclude I , η, v |= Ψ(s(X1, . . . ,Xn))
by choosing [[s(X1, . . . ,Xn)]]I ,v ,η for X in premiss.

By admissibility of substitutions, variables X1, . . . ,Xn are free at all
occurrences of s(X1, . . . ,Xn), hence their value is the same in all
occurrences.
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Soundness Proof

` φ(X )

` ∃x φ(x)

Proof (∃r locally sound).

For any I , η, v with I , η, v |= φ(X ) we conclude I , η, v |= ∃x φ(x)
according to the witness η(X ).
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Soundness Proof

` QE(∃X
∧

i (Φi ` Ψi ))

Φ1 ` Ψ1 . . . Φn ` Ψn

X only in branches Φi ` Ψi

Proof (i∃ sound).

For any I , v let η be such that I , η, v |= QE(∃X
∧

i (Φi ` Ψi )).

QE yields equivalence, thus I , η, v |= ∃X
∧

i (Φi ` Ψi ).

Pick witness d ∈ R for this existential quantifier.

As X does not occur anywhere else in the proof, it disappears from all
open premisses of the proof by applying i∃. Hence, by coincidence
lemma, value of X does not change truth value of premise.

Consequently, η can be extended to η′ by changing the interpretation
of X to the witness d such that I , η′, v |=

∧
i (Φi ` Ψi ).

Thus, η′ extends I , η, v to a simultaneous model of all conclusions.
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Soundness Proof

` ∀α(φ→ ψ)

〈α〉φ ` 〈α〉ψ

Proof (〈〉gen locally sound).

Simple refinement of coincidence lemma using that the universal
closure ∀α comprises all variables that change in α.

Let I , η, v |= 〈α〉φ, i.e., let (v , ν ′) ∈ ρI ,η(α) with I , η, ν ′ |= φ.

As α can only change its bound variables, which are quantified
universally in the universal closure ∀α, the premiss implies
I , η, ν ′ |= φ→ ψ, thus I , η, ν ′ |= ψ and I , η, v |= 〈α〉ψ.
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Soundness Proof

` ∀α(φ→ [α]φ)

φ ` [α∗]φ

Proof (ind locally sound).

For any I , η, v with I , η, v |= ∀α(φ→ [α]φ), we conclude
I , η, ν ′ |= φ→ [α]φ for all ν ′ with (v , ν ′) ∈ ρI ,η(α).

As these share the same η, we conclude I , η, v |= φ→ [α∗]φ by
induction along the series of states ν ′ reached from v by repeating α.

The universal closure is necessary as, otherwise, the premiss may yield
different η in different states ν ′.
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Soundness Proof

` ∀α∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

Proof (con locally sound).

Assume antecedent and premiss hold in I , η, v .

By premiss, I , η[v 7→ d ], ν ′ |= v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1) for
all d ∈ R and all states ν ′ that are reachable by α∗ from v ,
because ∀α comprises all variables that are bound by α or by α∗.

By antecedent, there is a d ∈ R such that I , η[v 7→ d ], v |= ϕ(v).

If d ≤ 0, we have I , η, v |= 〈α∗〉∃v≤0ϕ(v) for zero repetitions.

Otherwise, if d > 0, we have, by premiss, that

I , η[v 7→ d ], v |= v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1)

As v > 0 ∧ ϕ(v), we have for some ν ′ with (v , ν ′) ∈ ρI ,η[v 7→d ](α) that
I , η[v 7→ d ], ν ′ |= ϕ(v − 1).

Thus, I , η[v 7→ d − 1], ν ′ |= ϕ(v) satisfies IH for a smaller d and a
reachable ν ′, because (v , ν ′) ∈ ρI ,η(α) as v does not occur in α.

Induction well-founded, because d decreases by 1 down to d ≤ 0.
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If d ≤ 0, we have I , η, v |= 〈α∗〉∃v≤0ϕ(v) for zero repetitions.

Otherwise, if d > 0, we have, by premiss, that

I , η[v 7→ d ], v |= v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1)

As v > 0 ∧ ϕ(v), we have for some ν ′ with (v , ν ′) ∈ ρI ,η[v 7→d ](α) that
I , η[v 7→ d ], ν ′ |= ϕ(v − 1).

Thus, I , η[v 7→ d − 1], ν ′ |= ϕ(v) satisfies IH for a smaller d and a
reachable ν ′, because (v , ν ′) ∈ ρI ,η(α) as v does not occur in α.

Induction well-founded, because d decreases by 1 down to d ≤ 0.
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Summary

differential dynamic logic

dL = DL + HP
[α]φ φ

α

Verifying parametric hybrid systems:

Logics for hybrid systems

Compositional calculi

R-Skolem and free variables for
automation

Sound & complete / ODE

KeYmaera
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