15-819/18-879: Logical Analysis of Hybrid Systems 02: Dynamical Systems

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA

André Platzer (CMU)

LAHS/02: Dynamical Systems

Dynamical Systems

- Discrete Dynamical Systems
- Continuous Dynamical Systems
- Hybrid Dynamical Systems

Dynamical Systems

- Discrete Dynamical Systems
- Continuous Dynamical Systems
- Hybrid Dynamical Systems

Definition (Dynamical System)

One fixed rule describing temporal evolution of a point in state space \mathcal{X} . That is, time T acting on \mathcal{X} by $\varphi : T \times \mathcal{X} \to \mathcal{X}$, i.e.,

- T is a monoid for time (associative, neutral), e.g., $\mathbb{R}, \mathbb{Z}, \mathbb{N}, \mathbb{R}_{\geq 0}$
- $\varphi_0(x) = x$ "no time, no evolution"

• $\varphi_s(\varphi_t(x)) = \varphi_{t+s}(x)$

ጽ Dynamical System

"One law to rule them all, and in the darkness bind them"

Definition (Dynamical System)

One fixed rule describing temporal evolution of a point in state space \mathcal{X} . That is, time T acting on \mathcal{X} by $\varphi : T \times \mathcal{X} \to \mathcal{X}$, i.e.,

- T is a monoid for time (associative, neutral), e.g., $\mathbb{R}, \mathbb{Z}, \mathbb{N}, \mathbb{R}_{\geq 0}$
- $\varphi_0(x) = x$ "no time, no evolution"

•
$$\varphi_s(\varphi_t(x)) = \varphi_{t+s}(x)$$

"piecewise evolution is okay"

Definition (Discrete Dynamical System)

Discrete dynamical system $\varphi : T \times \mathcal{X} \to \mathcal{X}$ with $T = \mathbb{Z}$ or $T = \mathbb{N}$. Thus,

$$x_{n+1}=f(x_n)$$

for some generator/transition function $f : \mathcal{X} \to \mathcal{X}$.

$$\varphi_{n+1}(x) := f(\varphi_n(x)) = f^{n+1}(x)$$

Evolution/trace of discrete dynamical system from initial state $x_0 \in \mathcal{X}$

$$x_0 \mapsto f(x_0) \mapsto f^2(x_0) \mapsto f^3(x_0) \mapsto f^4(x_0) \mapsto \dots$$

Definition (Difference equation \rightsquigarrow change rate on unit grid)

$$x_{n+1} - x_n = f(x_n) - x_n =: h(x_n) * 1$$

André Platzer (CMU)

\mathcal{R} Discrete Dynamical Systems in Fractals

Example (Mandelbrot set)

$$x_{n+1} = \varphi_{n+1}(x_n) := x_n^2 + c \text{ on } \mathcal{X} = \mathbb{C} \text{ for a given } c \in \mathbb{C}.$$

 $M := \mathbb{C} \setminus \{ c \in \mathbb{C} : |\varphi_t(0)| \xrightarrow{t \to \infty} \infty \} \stackrel{(!)}{=} \{ c \in \mathbb{C} : \forall t |\varphi_t(0)| \le 2 \}$

LAHS/02: Dynamical Systems

🛪 Finite Automata

Definition (Finite Automaton)

- Σ finite input alphabet
- Q finite set of locations
- $\tau \subseteq Q \times \Sigma \times Q$ transition relation, written $q \stackrel{a}{\rightarrow} q^+$ for $(q, a, q^+) \in \tau$, or
 - $\tau: \boldsymbol{Q} \times \boldsymbol{\Sigma} \rightarrow \boldsymbol{Q}$ transition function if deterministic

Often initial state $q_0 \in Q$ and accepting states $F \subseteq Q$ are given too.

Definition (Accepted Language)

Accepts input word $w = a_1 a_2 \dots a_k \in \Sigma^*$ iff $\exists n \exists q_1, q_2, \dots, q_n \in Q$ with:

$$q_0 \stackrel{a_1}{\rightarrow} q_1 \stackrel{a_2}{\rightarrow} q_2 \stackrel{a_3}{\rightarrow} q_3 \stackrel{a_4}{\rightarrow} \cdots \stackrel{a_{n-1}}{\rightarrow} q_{n-1} \stackrel{a_n}{\rightarrow} q_n \in F$$

\mathcal{R} Finite Automaton Accepting Numbers

How do they align?

Definition (Continuous Dynamical System)

Continuous dynamical system $\varphi : T \times \mathcal{X} \to \mathcal{X}$ with $T = \mathbb{R}$ or $T = \mathbb{R}_{\geq 0}$ or interval and, e.g., $\mathcal{X} = \mathbb{R}^n$ and φ continuous. Usually φ defined by a differential equation with (continuous) function $f : \mathcal{X} \to \mathcal{X}$ such that $\varphi(x_0)$ solves the initial-value problem

$$x' = f(x) \quad x(0) = x_0$$

Evolution/flow of continuous dynamical system from initial state $x_0 \in \mathcal{X}$

${m {\cal R}}$ Hybrid Dynamical System

System that evolves both discretely and continuously

Definition (Hybrid Dynamical System)

Continuous dynamical system $\varphi : T \times \mathcal{X} \to \mathcal{X}$ with $T = \mathcal{X} =$

${m {\cal R}}$ Hybrid Dynamical System

System that evolves both discretely and continuously

Definition (Hybrid Dynamical System)

${m {\cal R}}$ Hybrid Dynamical System

System that evolves both discretely and continuously

Definition (Hybrid Dynamical System)

System that evolves both discretely and continuously

Definition (Hybrid Dynamical System)

Continuous dynamical system $\varphi : T \times \mathcal{X} \to \mathcal{X}$ with $T = \mathbb{N} \times \mathbb{R}$ $\mathcal{X} = \mathbb{R}^n$

• Continuous transition:

 $\varphi_{(n,t)}(x)$ solves an ODE y' = f(y), y(0) = x in t

System that evolves both discretely and continuously

Definition (Hybrid Dynamical System)

Continuous dynamical system $\varphi : T \times \mathcal{X} \to \mathcal{X}$ with $T = \mathbb{N} \times \mathbb{R}$ $\mathcal{X} = \mathbb{R}^n$

- Continuous transition: $\varphi_{(n,t)}(x)$ solves an ODE y' = f(y), y(0) = x in t
- Discrete transition:

 $\varphi_{(n+1,t)}(x) = g(\varphi_{(n,t)}(x))$ for a transition function $g: \mathcal{X} \to \mathcal{X}$

System that evolves both discretely and continuously

Definition (Hybrid Dynamical System)

Continuous dynamical system $\varphi : T \times \mathcal{X} \to \mathcal{X}$ with $T = \mathbb{N} \times \mathbb{R}$ $\mathcal{X} = \mathbb{R}^n$

- Continuous transition: $\varphi_{(n,t)}(x)$ solves an ODE y' = f(y), y(0) = x in t
- Discrete transition:

 $\varphi_{(n+1,t)}(x) = g(\varphi_{(n,t)}(x))$ for a transition function $g: \mathcal{X} \to \mathcal{X}$

• Is this a good model of a hybrid (dynamical) system?

System that evolves both discretely and continuously

Definition (Hybrid Dynamical System)

- Continuous transition: $\varphi_{(n,t)}(x)$ solves an ODE y' = f(y), y(0) = x in t
- Discrete transition: $\varphi_{(n+1,t)}(x) = g(\varphi_{(n,t)}(x))$ for a transition function $g : \mathcal{X} \to \mathcal{X}$
- Is this a good model of a hybrid (dynamical) system?
- Something doesn't quite add up.

System that evolves both discretely and continuously

Definition (Hybrid Dynamical System)

- Continuous transition: $\varphi_{(n,t)}(x)$ solves an ODE y' = f(y), y(0) = x in t
- Discrete transition: $\varphi_{(n+1,t)}(x) = g(\varphi_{(n,t)}(x))$ for a transition function $g : \mathcal{X} \to \mathcal{X}$
- Is this a good model of a hybrid (dynamical) system?
- Something doesn't quite add up.
- How does time pass, now, continuously or discrete?

System that evolves both discretely and continuously

Definition (Hybrid Dynamical System)

- Continuous transition: $\varphi_{(n,t)}(x)$ solves an ODE y' = f(y), y(0) = x in t
- Discrete transition: $\varphi_{(n+1,t)}(x) = g(\varphi_{(n,t)}(x))$ for a transition function $g : \mathcal{X} \to \mathcal{X}$
- Is this a good model of a hybrid (dynamical) system?
- Something doesn't quite add up.
- How does time pass, now, continuously or discrete?
- This is rather ambiguous in the above model! Try differently.

System that evolves both discretely and continuously

Definition (Hybrid Dynamin System)

- Continuous transition:
- $\varphi_{(n,t)}(x)$ solves on ODE y' = f(y), y(d) = x in . • Discrete transing:
 - $\varphi_{(n+1,t)}(x) = g \varphi_{(n,t)}(x)$ for transition function $g : \mathcal{X} \to \mathcal{X}$
- Is this a good more of a hybrid (dynamical) stem?
- Something doesn't ste add up.
- How does time pass, now, time or discrete?
- This is rather ambiguous in the above model! Try differently.