André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

@ Verification Calculus for Differential-algebraic Dynamic Logic dC
Motivation for Differential Induction

Derivations and Differentiation

Differential Induction

Motivation for Differential Saturation

Differential Variants

Compositional Verification Calculus

Differential Transformation

Differential Reduction & Differential Elimination

Proof Rules

© Soundness

© Restricting Differential Invariants

@ Deductive Power

@ Verification Calculus for Differential-algebraic Dynamic Logic dC

@ Motivation for Differential Induction

@ Derivations and Differentiation

o Differential Induction

@ Motivation for Differential Saturation

@ Differential Variants

@ Compositional Verification Calculus

@ Differential Transformation

@ Differential Reduction & Differential Elimination
@ Proof Rules

DAL = FOLg + ML '

Olldl =1

DAL = FOLr + DL '

ld]l > 1

[=]]l = 1

DAL = FOLR + DL 4 DAP '

ld]l > 1

[< —wdy Adb < wdr Vd] < 4]||d]| > 1

DAL = FOLRr + DL 4+ DAP l

[d1 = —db; di < —wdy A dé <wd; V d{ < 4] Hd” >1

DAL = FOLRr + DL 4+ DAP l

Id]l > 1
O |ld| > 1

[dliz—dg; d{g—wdg/\dégwdlvd{§4]||d|| >1 ;
Olld =1

-~

differential-algebraic program
= first-order completion of

hybrid programs

@ Verification Calculus for Differential-algebraic Dynamic Logic dC
@ Motivation for Differential Induction

“Property that remains true in the direction of the dynamics”

—_
-

I

-

-
-
-

v

-

-

)

A
»
El
‘

Iy

»

/4
¥
¥
e
#
1

4

3

N

~

- v v 0~

- ~ ~ =

- - -

-« <« < =

/
/
f
f
t
i
N
*

K

4

!
t
t
\
\
X
~

\ NN N —

\\\\\e(//

\\\\.74////

\\««,////
Ty

~ <«

- .

v e o~ %X

“Property that remains true in the direction of the dynamics”

\\\\\‘\&(/

I v
S
Y/
e/
At
A
I
3
A

- 7 A

/
/
f
f
t
i
N
*

!
t
!
A
\
X
~

- v A

<
4

- ¢ A
U S N
“~ v vy v =« a4
«~ ~ ~ =« 4 4
- < =« <« 4

-« <« <« « 4 ¥

F *
ve(F =) o
v (F — [o]F) F_ [o]F F
% O Q w
« « «
[a*] &

F closed under total differentiation with respect to differential constraints

F closed under total differentiation with respect to differential constraints l

~F

F

- ey - F)
x— FE[xX'=0AX]F

F closed under total differentiation with respect to differential constraints l

AL 3
\/

Fve(x — F') F YO (=F Ax — FL)
x— FE[X=0AX]F [X =0AN=F]xF (xX=0AXx)F

F closed under total differentiation with respect to differential constraints I

-F

F

[Total differential F’ of formulas?]

@ Verification Calculus for Differential-algebraic Dynamic Logic dC

@ Derivations and Differentiation

o1 — [F],,

o1 — [F],,
o +— [F],,

o1 — [F],,
o +— [F],,
In the limit:
" d[F1,
do

o1 — [Fl,,
o +— [F],,

In the limit:

d [Floe
dt

where d‘z(tt) is according to ODE

o1 — [Fl,,
o +— [F],,

In the limit:

d IIF]]a t 2
T()(C) = [Fls

where d‘z(tt) is according to ODE

o1 — [F],,
o +— [F],,

In the limit:
d [Floe

. © = [F 15

where d‘z(tt) is according to ODE

Valuation is a differential homomorphism l

D(r) = if ris a (rigid) number symbol
D(x(M) = (”+1) if x € ¥ is flexible, n > 0
D(a+ b) = D(a) + D(b)
D(a-b) = D(a)- b+ a-D(b)
D(a/b) = (D(a) - b~ a- D(b))/b?
D(F) = 7\ D(F;) {F1,..., Fm} all literals of F
D(a>b) = D_(a) > D(b) accordingly for <,>, < =

Valuation is differential homomorphism: for all flows ¢ of duration r > 0

along which 0 is defined, all ¢ € [0, r]

d[e]lga(t) (©) = [DO)] 5

Ifol=x=0;Ax, thencp):DH(X—>D2§) for all D.

(x—= F) = x—D(F)! for [= 6; AX|F

e If 0 is a variable x, immediate by ¢(():

¢ [[X]] d so(t)(X)

‘P(t) (C)

(€)= 3(() = [DC ()

Derivative exists as ¢ of order 1 in x, thus, continuously differentiable
for x.

@ If 0 is of the form a + b:

(12 + Hl)©)

@ If 0 is of the form a + b:

(12 + Hl)©)

= 2 ([alyge + [1,0)(©) [, homomorph for +

@ If 0 is of the form a + b:

12+ Bl0)(©)
= 2 ([alyge + [1,0)(©) [, homomorph for +

_ %([a]]‘p(t))(c) + %(ﬂb]hp(t))(o % is a (linear) derivation

@ If 0 is of the form a + b:

2 1o+ Hlue)(©)
= 2 ([alyge + [1,0)(©) [, homomorph for +
= %([a]]‘p(t))(g“) + %([b]]ﬂt))(() % is a (linear) derivation
= |[D(a)]]¢(c) + |[D(b)]]¢(<) by induction hypothesis

@ If 0 is of the form a + b:

(12 + Hl)©)
= 2 ([alyge + [1,0)(©) [, homomorph for +
= %([aﬂw(t))(C) + %([b]]ﬂt))(() % is a (linear) derivation
= |[D(a)]]¢(c) + |[D(b)]]¢(<) by induction hypothesis
= [D(a) + D(b)] 5 [-1, homomorph for +

@ If 0 is of the form a + b:
d
¢ I2 + bl (C)
d
= gy [aloge) + [Bl)(C) [-1, homomorph for +
d d d . . S
= E(l[a]lw(t))@) + a([b]]<p(t))(() 3 s 2 (linear) derivation
= [D(a)] 5y + [D(B)] 5 by induction hypothesis
= [D(a) + D(b)] 5c) [-1, homomorph for +
= [D(a+ b)) D(-) is a syntactic derivation

@ The case where @ is of the form a- b or a — b is accordingly, using
Leibniz product rule or subtractiveness of D(), respectively.

@ The case where @ is of the form a- b or a — b is accordingly, using
Leibniz product rule or subtractiveness of D(), respectively.

@ The case where 6 is of the form a/b uses quotient rule and further
depends on the assumption that b # 0 along . This holds as the
value of 6 is assumed to be defined all along state flow .

@ The case where @ is of the form a- b or a — b is accordingly, using
Leibniz product rule or subtractiveness of D(), respectively.

@ The case where 6 is of the form a/b uses quotient rule and further
depends on the assumption that b # 0 along . This holds as the
value of 6 is assumed to be defined all along state flow .

@ The values of numbers r € Q do not change during a state flow (in
fact, they are not affected by the state at all), hence their derivative
is D(r) = 0. O

Ifol=x=0; Ax, then<p’:D<—>(x—>Dﬁf}) for all D.

Using substitution lemma for FOL on the basis of [x{];) = [0i] () and
#(¢) = x at each time ¢ in the domain of .

@ Verification Calculus for Differential-algebraic Dynamic Logic dC

@ Differential Induction

F closed under total differentiation with respect to differential constraints l

AL 3
\/

Fve(x — F') F YO (=F Ax — FL)
x— FE[X=0AX]F [X =0AN=F]xF (xX=0AXx)F

F closed under total differentiation with respect to differential constraints I

-F

F

[Total differential F’ of formulas?]

2x > L X =x2+ x*2x > 1

FVx(D(2x) > D(}))
2x > L [X =x2+ x*2x > 1

FVx(2x' > 0)
FVx(D(2x) > D(}))
2x > L X =x2+ x*2x > 1

FVx (2(x* 4+ x*) > 0)

FVx(2x" > 0)

FVx(D(2x) > D(}))
2x > L [X =x2 + x*2x > 1

*
FVx (2(x% + x*) > 0)
FVx(2x" > 0)

- ¥x (D(2x) > D(3))
2x > % - [x’:x2+x4]2x2 %

F Vv (d? + d2 = v2 — [Bw F(w)] d? + d3 = v?)

Flw) = dj = —wdr ANds = wdy

Fd?+d3 =v? — [FwF(w)]d? + d3 = v2
F Vv (d? + d2 = v2 — [Bw F(w)] d? + d3 = v?)

Flw) = dj = —wdr ANds = wdy

d? +d2 =v2F BwF(w)]d? +d3 =2
Fd?+d3 =v? — [FwF(w)]d? + d3 = v2
Vv (d? + d2 = v2 — [Bw F(w)] d? + d3 = v?)

Flw) = dj = —wdr ANds = wdy

- Vx, x2 Yy, da Voo (2ch] + 2dpd) = 0)
d? +d? = v F [BwF(w)] d? + d3 = v?
Fd?+d3 =v? — [FwF(w)]d? + d3 = v2
F Vv (d? + d2 = v2 — [Bw F(w)] d? + d3 = v?)

Flw) = d = —wdr ANdb =wdy

F Vx1, xo Vdi, da Vw (2d1(— wdg) + 2dhwdy = 0)
= VX1,X2 le, d2 Yw (20’10’{ + 2d2dé = 0)

d? +d? = v2 F [Bw F(w)] d? + d3 = v?
Fd? +d3 =v? — [FwF(w)]d? + d3 = v2
FYv(d? + d2 = v2 — [Jw F(w)] d? + d? = v?)

]:(w) = d{: —wdg/\dézwdl

[QE(VXl,Xz Vdi, dr Vw (2d1(—wd2) + 2dbhwd; = 0))
F Vx1, xo Vdy, da Vw (2d1(— wdz) + 2dhwd, = 0)
F VX1, X2 le, d2 Yw (20’10’{ -+ 2d2dé = 0)

d? +d? = v2 F [BwF(w)] d? + d3 = v?
Fd?+d3 =v? — [FwF(w)]d? + d? = v2
FYv(d? + d2 = v2 — [Jw F(w)] d? + d? = v?)

Flw) = dj = —wdr ANds = wdy

*
[QE(VXl,Xz Vdi, dr Vw (2d1(—wd2) + 2dbhwd; = 0))
F Vx1, xo Vdy, da Vw (2d1(— wdz) + 2dhwd, = 0)
F VX1, X2 le, d2 Yw (20’10’{ + 2d2dé = 0)

d? +d2 =v2F BwF(w)]d? +d3 =v2
Fd?+di = v?— [BwF(w)]d? +d3 =v?
FYv(d? + d2 = v2 — [Jw F(w)] d? + d? = v?)

Flw) = dj = —wdr ANds = wdy

F closed under total differentiation with respect to differential constraints l

A 3
\</

di > do — [x:=32+1;
di = —wdy, d5 = wdy
|di > d>

F closed under total differentiation with respect to differential constraints l

A 3
\</

di Zd2—>[x:=32+1;
(di = —wda A dy = wdy) V (di < 2d;)
|di > do

F closed under total differentiation with respect to differential constraints l

A 3
\</

di Zd2—>[x:=32+1;
Jw(w<1Ad] = —wdy ANdy = wdy) V (d] < 2d;)
|di > d>

F closed under total differentiation with respect to differential constraints l

di Zd2—>[x:=32+1;
Jw(w<1Ad] = —wdy ANdy = wdy) V (d] < 2d;)
|di > d>

@ quantified nondeterminism /disturbance

F closed under total differentiation with respect to differential constraints l

d12d2—>[x:=32+1;
Jw(w <1Ad] = —wdy ANdy = wdy) V (d] < 2d;)
|di > d>

@ quantified nondeterminism /disturbance

F closed under total differentiation with respect to differential constraints l

d>d—[x>0—-3Ja(a<b5Ax:=a>+1);
Jw(w<1Ad] = —wdy ANdy = wdy) V (d] < 2d;)
lcdh > d>

e discrete quantified nondeterminism /disturbance

FVY*(x — F')

Xx— FE[X =0AX]F

F F
FVY*(x — F') FYYFAx— F)
x— FF[xX'=0AX]F x— FF[xX'=60nAX]F

Fvi(x — F)

x— FF[xX'=0AX]F

Example (Restrictions)

FVx(x?2<0—2x-1<0)

FVYFAx— F)

x*<0F[x¥=1]x*<0

Xx— FE[X=0AX]F

F F
FVY*(x — F') FYYFAx— F)
x— FF[xX'=0AX]F x— FF[xX'=60nAX]F
Example (Restrictions)
X Xo+t
FVx(x* <0—2x-1<0) A
xXX<OF X =1x2<0 =
0 - t

Fve(x = F)
Xx— FE[X =0AX]F

Example (Restrictions are unsound nonsense!)
X Xo+t
FVx(x?<0—2x-1<0) A
XX<O0FX =1]x*<0 g
0~ t

Example (Negative equations)

FVx(1#0)
x#0F X' =1x#0

Example (Negative equations)

X Xo+t
* \4X
- Vx (1 #0) E

XxZOF X =1x #0 . ‘ t

Example (Negative equations are unsound nonsense!)

X Xo+t

x 20 Nl =k £0 0 ‘ t

FAG =

FAG =
=F NG

F
F/\G
\/G/
/

F' A
G/

FAG =F NG
FVG =FvG?

FAG =F NG
FVG =FvG?

Example (Differential induction provable)
d} 4+ d3 = v? — [Fw F(w)] d? + d3 = v? }

FAG =F NG
FVG =FvG?

Example (Differential induction provable)

d} 4+ d3 = v? — [Fw F(w)] d? + d3 = v?

Example (Thus provable)

x1>0Vd?4d3=v2 = [FwFW)](xa >0V d2+d? =v?)

FAG =F NG
FVG =FvG?

Example (Differential induction provable)

d12 —i—d22 =v2 - [Fw F(w)] d12 + d22 = v?

Example (Nonsense!)

x1>0Vd?4d3=v2 = [FwFW)](xa >0V d2+d? =v?)

FAG =F NG
FVG =F NG

Example (Differential induction provable)

d12 —i—d22 =v2 - [Fw F(w)] d12 + d22 = v?

Example (Nonsense!)

x1>0Vd?4d3=v2 = [FwFW)](xa >0V d2+d? =v?)

Differential invariants are closed under conjunction and differentiation:
F diff. inv., G diff. inv. = F A G diff. inv. (of same system)
F diff. inv. = F' diff. inv. (of same system)

@ Verification Calculus for Differential-algebraic Dynamic Logic dC

@ Motivation for Differential Saturation

Fx{ =di,d{ = —wdo, x5 = do, dy = wd, .]J(x1 — y1)* + (x2 — y2)* > p°

— 2 2 2 —
=y g VY P Y T

Ox1 0x2) — Xl

Fq =di,dp = wdz,Xz =dy,dy = wdy, . J(x1 — y1)° + (Xz —y)>p

N

—vl2 2 2
I VN Ty N o W S e e
Fxi=di,di = wdz,Xz =db, d) =wdi,.J(x1 — y1)° + (X2 —y)* > p?

3||X y||2 a||X —y|? 3||X >’||2 Alx—yl? ap®
H dy + o e + d> + Ty eZZaxldl...

- [X1 = dla d1 = Wd2aX2 = d2» dz =wd, .| — }’1)2 + (2 — Y2)2 >p

F20a —y1)(di —e1) +2(x2 — y2)(d2 — &) >0
15) x 2 Ol|x 2 o x 2 A||x—yl? ap?
B P S ORI Y TS NS
= [X1 d1, di = —wda,x; = dz, dy = wdy, . J(xa —y1)*+ (e —y2)° > p

F20a —y1)(di — e1) + 20 — y2)(do — &) > 0

3|IX yII2 BIIX —y|? <9||X yII2 Allx=yl? ap?
[di + 5y, €1+ d> + 5, egzaxldl...

H [X1 d17d1 Wd2ax2 - d27d2 —Wdl,..](X]_ —}/1)2+(X2—Y2)2 > p

= 2(X1 y1)(d1 — 61) + 2(X2)(d2 —) >0

2 2 2 _vlI2 2
- a||x yII di + 6IIXy1yII e + 8I|X yII dy + 3|I>éy2y|| & > g—’;dl---
F [X1 — dl, di = —wdy,xb = d2, ds =wdi, . J(x1 —y1)? + (e —y)?>p

Y N
e Nl
e
d— . p

LFdf = —wdr,e] = —wex, xh = do,db = wdi,.]Jdi —e1 = —w(x2 — y2)

2

F20x1 —y1)(~wlhe —y2)) + 20 — y2)w(xs —y1) 20

= 2(X1 y1)(d1 — 61) + 2(X2)(d2 —) >0
= a”X Y||2d + a||X Y||2e + 8||X Y||2d + 3”):9—}’”262 > g_l)idl---

dy1 y2 -
F [Xl = d1, dl wdQ,X2 d2, d2 wdp, . J(xa — y1)2 + (x — y2)2 > p?
Y
e Nl
=N Q
ey

LFdf = —wdr,e] = —wex, xh = do,db = wdi,.]Jdi —e1 = —w(x2 — y2)

F20x1 —y1)(—wlxe — y2)) + 20 — y2)w(x1 —y1) > 0

- 2(X1 yl)(dl - e1) + 2(X2)(d2 —) >0
2 2 X 2 R 2
= 3||X Y|| dy + a||><y1y|| e -+ all Y|| dr + 6||ayz}’|| & > g—’;ldl...
- [X1 = d1, di = —wdy,x3 = d2v dy = wdr, .J(xa — i)+ (e —y2)? > p

d(di—e1) g/ d(dl—el) ¢ _Owle—ya) 1 Owle—ya)
. s T e U o X2 dyy)2

L Fdf = —wdr,e] = —wex, xh = d2,d2 =wd,.]d —e1 = —w(x2 — y2)

F20x1 —y1)(—wlxe — y2)) + 20 — y2)w(x1 —y1) > 0

- 2(X1 yl)(dl - e1) + 2(X2)(d2 —) >0
2 2 X 2 R 2
= 3||X Y|| dy + a||><y1y|| e -+ all Y|| dr + 6||ayz}’|| & > g—’;ldl...
- [X1 = d1, di = —wdy,x3 = d2v dy = wdr, .J(xa — i)+ (e —y2)? > p

d(di—e1) y/ d(dl—el) ¢ _Owle—y) i Owle—ya) i
7 e DAY 7 W YR oy V2

. F [d1 wdz, e{ = — weg,X2 d2, d2 = wdl, ..]d1 — €1 = —w(XQ — yg)

F20x1 —y1)(—wlxe — y2)) + 20 — y2)w(x1 —y1) > 0

= 2(X1 yl)(dl - e1) + 2(X2)(d2 —) >0
19) x 2 9||x 2 4] x 2 || x—y||? op?
I = R y|| byt Do P > 07
- [X1 = dlvdl —wdp, x5 = d2»d2 wdi, J(xa —y1)? 4+ (2 — y2)* > p

- A8 (—wdy) + TG (—wey) = TRl g, — Rlexl,,

. F [dl wdQ, el weg,xé = d2, d2 = wdl, .]d1 — €1 = —w(XQ — yg)

F20x1 —y1)(—wlxe — y2)) + 20 — y2)w(x1 —y1) > 0

- 2(X1 yl)(dl - e1) + 2(X2)(d2 —) >0
2 2 X 2 R 2
- 3||X Y|| dy + a||><y1y|| e -+ all }’|| dr + 6||ayz}’|| & > g—’;ldl...
- [X1 = d1, di = —wdy,x3 = d2v dy = wdr, .J(xa — i)+ (e —y2)? > p

Y
e <

F—wdr +wer = —w(dr — &)

O aody) + P ueg) = ~ LGy — TR,

L F [dl wdz, el —wey, Xé = d2, d2 = wdl, .]d1 — €1 = —w(XQ — yg)

F20x1 —y1)(—wlxe — y2)) + 20 — y2)w(x1 —y1) > 0
= 2(X1 yl)(dl — e1) + 2(X2)(d2 —) >0

2 2 2 _vlI2 2
- a||x yII dy + 6IIXy1yII e + 8I|X yII dy + 3|I>éy2y|| & > g—’;dl---
F [X1 — dl, di = —wdy,xb = d2, ds =wdi, . J(x1 —y1)? + (e —y)?>p

F differential invariant of [x' = 8 A H]¢, then
[X =0AH¢ iff [x'=0AHAF|¢

F—wdr +wer = —w(dr — &)

T) + 2 () =~ B, - TR,

L Fdf = —wdr,e] = —wex, xh = db,d} = wdi,.]Jdi — e = —w(x2 — y2)

F20a —y1)(—wle — y2)) + 200 — y2)w(xa —y1) > 0
= 2(X1 y1)(d1 —e)+ 2(X2)(d2 —e)>0

6‘||X yII2 6||X —y|? 3|IX yII2 A|lx—y]? op?
= dy + A ey 4 dy+ ey > gy

- [X1 = d1, di = —wda,x; = d2v dy = wdh,.J(x1 — y1)° + (2 — y2)> > p
[reﬁne dynamlcs] [by differential saturation]

F—wdh +wer = —w(dr — &)

- AGa (cwds) + A5 (Cwe) = PR, - e

CHld = —wds, 6] = —wex, X = do,db = wdi,.]Jdi —e1 = —Ww(x2 — yo)

@ Verification Calculus for Differential-algebraic Dynamic Logic dC

@ Differential Variants

F closed under total differentiation with respect to differential constraints l

AL 3
\/

F(x — F) - (~F Ay — FL)
x— FE[X=0AX]F [X =0AN~F]xF (xX'=0AXx)F

F positive under total differentiation with respect to differential constraints l

A 3
\</

I—(X—>F') I—(—|F/\X—>F§>)
X— FF X =0AXF =0 A~FIxF (X =6Ax)F

F 3e>0Vy, vk (FF A x — (F' > 5)2}. . ZZ)

[Fy1, vk (X = 01/, Ax = 00 A~F)IX E (Fya, v (5 = 1A AXf = 00 A X)) F
when Lipschitz-continuous and F without equalities

Fb>0

= QE(3d (([|d]I> < b*) A(di > 0 A db > 0)))
Fdi>0Adr >0
F de>0Vxq, xo (X1 <p1Vxp<pp—d>eNdy> 6)

P < b F(F(0)(x1 = p1 Axe > po)

H[[d]I* < B2 A (F(0)) (1 > p1 A x2 > p2)

- 3d (||d]]* < b* A (F(0))(x1 = p1 Ax2 > p2))

= Vp3d ([|d]* < b* A (F(0)(a = p1 A xe > p2))

F(0) = Xi:dl/\xé:dg
F

X122 p1AX2 2> P2

Fb>0

= QE(3d (([|d]I> < b*) A(di > 0 A db > 0)))
Fdi>0Adr >0
F de>0Vxq, xo (X1 <p1Vxp<pp—d>eNdy> 6)

P < b F(F(0)(x1 = p1 Axe > po)

H[[d]I* < B2 A (F(0)) (1 > p1 A x2 > p2)

- 3d (||d]]* < b* A (F(0))(x1 = p1 Ax2 > p2))

= Vp3d ([|d]* < b* A (F(0)(a = p1 A xe > p2))

F) = x{ =di Ax = dy
F=xx2>2piAx2>p
F'= x{>0Ax>0

Fb>0

= QE(3d (([|d]I> < b*) A(di > 0 A db > 0)))
Fdi>0Adr >0
F de>0Vxq, xo (X1 <p1Vxp<pp—d>eNdy> 6)

P < b F(F(0)(x1 = p1 Axe > po)

H[[d]I* < B2 A (F(0)) (1 > p1 A x2 > p2)

- 3d (||d]]* < 6% A (F(0))(xa = p1 Axe > p2))

= Vp3d ([|d]* < b* A (F(0)(a = p1 A xe > p2))

F) = x{ =di Ax = dy
F=xx>2pAx2>p
F'= x{>0Ax>0

F'>e = x]>eAxhb>c¢

Fb>0

= QE(3d (([|d]I> < b*) A(di > 0 A db > 0)))
Fdi>0Adr >0
F de>0Vxq, xo (X1 <p1Vxp<pp—d>eNdy> 6)

P < b F(F(0)(x1 = p1 Axe > po)

H[[d]I* < B2 A (F(0)) (1 > p1 A x2 > p2)

- 3d (||d]]* < b* A (F(0))(x1 = p1 Ax2 > p2))

= Vp3d ([|d]* < b* A (F(0)(a = p1 A xe > p2))

F0) = x| =di Ax) = dy
F=xx>2pAx2>p
F'= x{>0Ax>0

F'>e = x| >enNxhb>¢

Fb>0

= QE(3d (([|d]I> < b*) A(di > 0 A db > 0)))
Fdi>0Adr >0
F de>0Vxq, xo (X1 <p1Vxp<pp—d>eNdy> 6)

P < b F(F(0)(x1 = p1 Axe > po)

H[[d]I* < B2 A (F(0)) (1 > p1 A x2 > p2)

- 3d (||d]]* < b* A (F(0))(x1 = p1 Ax2 > p2))

= Vp3d ([|d]* < b* A (F(0)(a = p1 A xe > p2))

F(0) = Xi:dl/\xé:dz

F=xx2>2piAx2>p
Flr=d>0ANd>0
F'>e =d >eNdr, > ¢

Example (Progress)

FVx(x>0— —x<0)
F{(x'=—-x)x<0

Example (Progress)

FVx(x>0— —x<0) X
F{(xX'=-x)x<0 * et

Example (Unsound without minimal progress!)

Example (Mixed dynamics)

*
F 3e>0VxVy (x <6 —1>¢)
F(X=1Ay =1+y*)x>6

Example (Mixed dynamics)
: ,'I ———X
4+ | I:

- 2 Jo s)
F3e>0VxVy(x <6 —1>¢) 0 % /// glf //2;/ t
F(X=1AY =14y%)x 26 _4217 / l,/

—ar |

6l h !

Example (Unsound without Lipschitz-continuity!)
! H ——=X
4r | T
*k 2L ! // : /y
| Pram| _’
F 3e>0VxVy (f < >¢) 0 % == %,E 5 t
FixX'=1Ay N+ yYx>6 _i’ ,,/ |,//
_4 ! !
I "
—6’ !| 1]

@ Verification Calculus for Differential-algebraic Dynamic Logic dC

@ Compositional Verification Calculus

[x:=0]¢

x' =6
x 1= yx(t)

b= 0o

%
[x :=0]¢

@—»@
Jt>0 (x = yi(t))o M

(X' =0)¢ X —“y;(

%
[x :=0]¢

@—»@
Jt>0 (x = yi(t))o M

(X' =0)¢ X —“y;(

x'=0Nx

~

X' =0A)¢ \ “‘O /W

¢

o L .

x:=0
[x :=0]¢
x' =0
>0 (x 1= y,(t)) o . .
(X' =0)¢ x:—_y;(f) ’
x' =0 AN X
v W
7 e ©¢
I'— O A '~ I
(x X)9 Jﬁr(s)O;(= 3’7‘&

[x :=0]¢ @ﬂ)@
Ft>0 (x = yi(t))o @%

(X' = 0)¢ X‘:‘:"y‘it) 0
x'=0Nx
TS0 (T A (x = y(B)g) . /i@(ﬁ
(X' =0AX)0 AEN RO LI\

[x :=0]¢ @ﬂ)@
Ft>0 (x = yi(t))o @%

(X' = 0)¢ X‘:‘:"y‘it) 0
x'=0Nx
TS0 (T A (x = y(B)g) . /i@(ﬁ
X' =0Ax)0 =y ~(~)O Q)
x(s) '

X = V0<s<t(x:=yx(s))x

compositional semantics = compositional rules!

[o]o A [l6 °/

[aUgl¢

.

oo A [8]9 ° g
[aUBl¢ \

. L

B

[}
v (s) w

[o; B¢ a J&;

o fm)o
[alé A [5]6 °
[U Blo

ug

¢
a; B
(N

[o; B]o Y a \\5_/ J&;
Bl

o fm)o
[alé A [5]6 °
[U Blo

ug
¢

a; B

(N

S

[o; B¢ a J&;
[o][B]® [Bl¢

o Ao
ol A [86 q'aﬂ’fy
[0 U Bl

ug

¢
a; B
(N

[a][B]¢
[ov; Blg

S

« O
elldle (80

(w)o
[a]o A 186 °

[aUgl¢

‘ alUg
7 ¢

a; 3
[a][B]¢ L @ "
[o; B9 a Jé;
[][8l¢ (Bl

F [a*]F

©
)
S

(w)o
[a]o A 186 °

[aUgl¢

‘ alUg
7 ¢

a; 3
[a][B]¢ L @ "
[o; B9 a Jé;
[][8l¢ (Bl

- F F
F [a*]F

F

N A
v O O 1
o o @

(w)o
[a]o A 186 °

[aUgl¢

‘ alUg
7 ¢

a; 3
[a][B]¢ L @ "
[o; B9 a Jé;
[][8l¢ (Bl

- F F
F [a*]F

F — [a]F F
v O () w
(6% [0 (0%

(w)o
[a]o A 186 °

[aUgl¢

‘ alUg
7 ¢

a; 3
[a][B]¢ L @ "
[o; B9 a Jé;
[][8l¢ (Bl

FF F(F—[a]F) F
F [a*]F

F — [a]F F
v O () w
(6% [0 (0%

F 3vp(v)

Favep(v) FVYv>0(e(v) — (a)p(v —1))
E (o)

a*

v p(v)
v Q O w
« « «

Vv>0(p(v) = (a)p(v —1))

F3ve(v) FVv>0(p(v) = (@)e(v —1)) F Bv<0p(v) —)
= ()¢

a*

Ave(v) Iv<0¢(v)
1% () O w
a a a

Vv>0(p(v) = (a)p(v —1))

@ Verification Calculus for Differential-algebraic Dynamic Logic dC

@ Differential Transformation

Let D and £ be DA-constraints (same changed variables). If D — & is a
tautology of (non-differential) first-order real arithmetic (that is, when
considering x(") as a new variable independent from x), then p(D) C p(&).

Let D and £ be DA-constraints (same changed variables). If D — & is a
tautology of (non-differential) first-order real arithmetic (that is, when
considering x(") as a new variable independent from x), then p(D) C p(&).

e DA-constraints D and & are equivalent iff p(D) = p(&).

Let D and £ be DA-constraints (same changed variables). If D — & is a
tautology of (non-differential) first-order real arithmetic (that is, when
considering x(") as a new variable independent from x), then p(D) C p(&).

@ DA-constraints D and & are equivalent iff p(D) = p(&).

@ Semantics of DA-programs is preserved when replacing DA-constraint
equivalently in non-differential first-order real arithmetic.

QDE¢§andSE¢§<’.

QDE¢§andEE¢§<’.

@ Let ¢ — 1 be valid in (non-differential) real arithmetic.

QDE¢§andEE¢§<’.

@ Let ¢ — 1 be valid in (non-differential) real arithmetic.

@ Let (v,w) € p(D) according to a state flow .

QDE¢§andEE¢§<’.

@ Let ¢ — 1 be valid in (non-differential) real arithmetic.

@ Let (v,w) € p(D) according to a state flow .
@ Then ¢ is a state flow for £ that justifies (v, w) € p(€):

Proof.
DE¢§</ andgzwfg.

Let » — ¢ be valid in (non-differential) real arithmetic.
Let (v, w) € p(D) according to a state flow .

Then ¢ is a state flow for £ that justifies (v, w) € p(€):
For any ¢ € [0, r], we have 3(¢) = D

Proof.
DE¢§</ andgzwfg.

Let » — ¢ be valid in (non-differential) real arithmetic.
Let (v, w) € p(D) according to a state flow .

Then ¢ is a state flow for £ that justifies (v, w) € p(€):
For any ¢ € [0, r], we have 3(¢) = D

Hence ¢(¢) = €,

Proof.
DE¢§</ andgzwfg.

Let » — ¢ be valid in (non-differential) real arithmetic.

Let (v, w) € p(D) according to a state flow .

Then ¢ is a state flow for £ that justifies (v, w) € p(€):

For any ¢ € [0, r], we have 3(¢) = D

Hence ¢(¢) = €,

because 3(C) |= ¢ implies 3(¢) = 1% by validity of ¢ — 1.

Proof.
DE¢§</ andEEzpfg.

Let » — ¢ be valid in (non-differential) real arithmetic.

Let (v, w) € p(D) according to a state flow .

Then ¢ is a state flow for £ that justifies (v, w) € p(€):

For any ¢ € [0, r], we have 3(¢) = D

Hence ¢(¢) = €,

because 3(C) |= ¢ implies 3(¢) = 1% by validity of ¢ — 1.

D and & need same set of changed variables as unchanged variables z
remain constant.

Proof.
DE¢§</ andEEng‘g.

Let » — ¢ be valid in (non-differential) real arithmetic.

Let (v, w) € p(D) according to a state flow .

Then ¢ is a state flow for £ that justifies (v, w) € p(€):

For any ¢ € [0, r], we have 3(¢) = D

Hence ¢(¢) = €,

because 3(C) |= ¢ implies 3(¢) = 1% by validity of ¢ — 1.

D and & need same set of changed variables as unchanged variables z
remain constant.

Add z' = 0 as required.

@ Verification Calculus for Differential-algebraic Dynamic Logic dC

@ Differential Reduction & Differential Elimination

DA-constraints admit differential inequality elimination, i.e., to each

DA-constraint D, an equivalent DA-constraint without differential
inequalities can be effectively associated that has no other free variables.

DA-constraints admit differential inequality elimination, i.e., to each

DA-constraint D, an equivalent DA-constraint without differential
inequalities can be effectively associated that has no other free variables.

o Let & like D with all differential inequalities 61 < 6> replaced by a
quantified differential equation Ju (01 = 62 — u A u > 0) with a new
variable u for the quantified disturbance (accordingly for >, >, <).

DA-constraints admit differential inequality elimination, i.e., to each

DA-constraint D, an equivalent DA-constraint without differential
inequalities can be effectively associated that has no other free variables.

o Let & like D with all differential inequalities 61 < 6> replaced by a
quantified differential equation Ju (01 = 62 — u A u > 0) with a new
variable u for the quantified disturbance (accordingly for >, >, <).

o Diff. trafo: equivalence of D and £ is a simple consequence of the
corresponding equivalences in first-order real arithmetic.

DA-constraint may become inhomogeneous: #; < x’ < 6, produces

Juiv(X' =01 +uAx =0 —vAu>0Av>0)

DA-constraints admit differential equation normalisation, i.e., to each
DA-constraint D, an equivalent DA-constraint with at most one
differential equation for each differential symbol can be effectively
associated that has no other free variables. This differential equation is of
the form x(") = 0 where ord, 8 < n.

DA-constraints admit differential equation normalisation, i.e., to each
DA-constraint D, an equivalent DA-constraint with at most one
differential equation for each differential symbol can be effectively

associated that has no other free variables. This differential equation is of
the form x(" = 0 where ord, 6 < n.

DA-constraints admit differential equation normalisation, i.e., to each
DA-constraint D, an equivalent DA-constraint with at most one
differential equation for each differential symbol can be effectively

associated that has no other free variables. This differential equation is of
the form x(" = 0 where ord, 6 < n.

@ For each differential symbol x(" € ¥’ | introduce new non-differential
variable X, € X.

DA-constraints admit differential equation normalisation, i.e., to each
DA-constraint D, an equivalent DA-constraint with at most one
differential equation for each differential symbol can be effectively

associated that has no other free variables. This differential equation is of
the form x(" = 0 where ord, 6 < n.

@ For each differential symbol x(" € ¥’ | introduce new non-differential
variable X, € X.

o Diff. trafo: equivalence of D and 3X, (x(”) =X, A\ D))f(';)) is a simple
consequence of the corresponding equivalence in FOLg.

DA-constraints admit differential equation normalisation, i.e., to each
DA-constraint D, an equivalent DA-constraint with at most one
differential equation for each differential symbol can be effectively

associated that has no other free variables. This differential equation is of
the form x(" = 0 where ord, 6 < n.

@ For each differential symbol x(" € ¥’ | introduce new non-differential
variable X, € X.

e Diff. trafo: equivalence of D and 3X, (x(") = X, A DX

x(")
consequence of the corresponding equivalence in FOLg.

) is a simple

@ Induction for all such x(") € ¥ in D gives desired result.

O
~ AndréPlatzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 31 /63

Recall aircraft progress property
Vp3d ([dIP < B2 A (4 = di A = da)(a > pr A > o))
Similar proof can be found for

Vp3d (|d]I> < b A(q > di Axy > da)(x1 > pr A xe > p2))
W..(HU(X{:d]_+U]_/\X£:d2+U2/\U1ZO/\UQZO))(XlZpl/\XQsz

The proof is identical to before, except that differential induction yields
VxVu((xi <piVxe<p2)Aui 20N >0 - di+u >ecANda+un>e)

@ Verification Calculus for Differential-algebraic Dynamic Logic dC

@ Proof Rules

An application of a substitution o is admissible if no variable x that o
replaces by ox occurs in the scope of a quantifier or modality binding x or
a (logical or state) variable of the replacement ox. A modality binds
variable x iff its DA-program changes x, i.e., contains a DJ-constraint with
x:=0 or a DA-constraint with x’.

An application of a substitution o is admissible if no variable x that o
replaces by ox occurs in the scope of a quantifier or modality binding x or
a (logical or state) variable of the replacement ox. A modality binds
variable x iff its DA-program changes x, i.e., contains a DJ-constraint with
x:=0 or a DA-constraint with x’.

All substitutions in all rules need to be admissible!

Any instance

(O S O JS ol 18
do - VYo

of a rule can be applied as a proof rule in context:

Mo -V, A ... T, kv, A
[oo - Vo, A

I, A are arbitrary finite sets of additional context formulas (including
empty sets)

Symmetric schemata can be applied on either side of the sequent: If

4
%o
is an instance, then
M o1, A . Mo A
[o, A an FdoF A

can both be applied as proof rules of the dZ calculus, where ', A are
arbitrary finite sets of context formulas

10 propositional rules

o ¢+ o Yk Fo oF
—¢ = PNYE oV F
¢+ Fo Y Fo ¢

i FoNnY Fovy

o ¢ Wk

Fo—1 o=k o9

() (B)¢ Ix(T)¢ XA Q.. G
(a; BYop (IxT)o (x1:=01 N .. ANxp: =0, AN X)O
[o][8]¢ vx [T]¢ X g
[ov; Bl [Fx T)o [x1:=01 A .. Axp:=0p A\ X]P

(Vv (B)¢ (AU...UTnd ((Dr1U...UDn)")¢
(aUf)o (T)o (D)o

[alp A [Bl [FAU...UT]e [(D1U...UD,)*]e
[U B¢ [T [D]¢

e (D L T A
G ger
in FOLR

Fvi(¢—v) BV e —9) EVUF —[o]F)
[aloFlaly (a)oF (a)y FFa]F

F v (e(x) = (@)p(x — 1))
Ave(v) F (a*)Iv<0¢(v)

YOy Yy (x — P)

et
Xn

By 3 x]FFE By 3w (x{ =01 A .. A XL =6, A X)]F

F 3e>0YVy1, yi (-F Ay — (F' > 5)2')
By, vk (X = 01/, Axpy = 00 A ~F)Ix F By, yi (x{ = 018, AX, = 0, A X)) F

= (s(Xa, .., Xn)) F¢(X)
F Vx ¢(x) F Ix ¢(x)

d(s(X1,.., Xn) F d(X) +
Ix o(x) F Vx ¢(x)

s new, {X1,..,Xp} = FV(3x ¢(x)) X new variable

F QE(VX (¢(X) - V¥(X))) FQE(EX A;(®i+V)))
d(s(X1,..,Xn)) F W(s(X1,..,Xn)) [P ST O S U8
X new variable X only in branches ¢; - WV;

QE needs to be defined in premiss

© Soundness

DAL calculus is sound, i.e.,

L = Eo

locally sound iff foreach v (vi=® = v V)

v

DAL calculus is sound, i.e.,

L = Eo

v locally sound iff foreach v (vi=® = v V)

DAL calculus is sound, i.e.,

L = Eo

@ Differential induction

v locally sound iff foreach v (vi=® = v V)

DAL calculus is sound, i.e.,

L = Eo

@ Differential induction

@ Side deductions

locally sound iff foreach v (vi=® = v V)

v

[(D1uU...UD,) o

[D]¢

o diff.trafo. = there is an equivalent DNF D; VvV --- VvV D, of D. (>)

[(D1uU...UD,) o

[D]¢

o diff.trafo. = there is an equivalent DNF D; VvV --- VvV D, of D. (>)
@ p(D) 2 p((D1U...UD,)") obvious

[(D1uU...UD,) o

[D]¢

o diff.trafo. = there is an equivalent DNF D; VvV --- VvV D, of D. (>)
@ p(D) 2 p((D1U...UD,)") obvious
@ p(D) C p((D1U...UD,)") to show.

[(D1uU...UD,) o

[D]¢

o diff.trafo. = there is an equivalent DNF D; VvV --- VvV D, of D. (>)
@ p(D) 2 p((D1U...UD,)") obvious

@ p(D) Cp((D1U...UD,)") to show.

@ Let ¢ state flow for a transition (v,w) € p(D).

[(D1uU...UD,) o

[D]¢

diff.trafo. = there is an equivalent DNF Dy V --- VvV D, of D. (>)
p(D) 2 p((D1U...UD,)") obvious

p(D) C p((D1U...UD,)") to show.

Let ¢ state flow for a transition (v,w) € p(D).

Assume ¢ non-Zeno.

[(D1uU...UD,) o

[Dl¢

o diff.trafo. = there is an equivalent DNF D; VvV --- VvV D, of D. (>)
@ p(D) 2 p((D1U...UD,)") obvious

@ p(D) Cp((D1U...UD,)") to show.

@ Let ¢ state flow for a transition (v,w) € p(D).

@ Assume ¢ non-Zeno.

@ Finite number, m, of switches between D;, say D;,Dj,,...,D;, .

NN 15.610/12: Diflerentiakaigebraic Dynamic Provine IR

[(D1uU...UD,) o

[Dl¢

diff.trafo. = there is an equivalent DNF Dy V --- VvV D, of D. (>)
p(D) 2 p((D1U...UD,)") obvious

p(D) C p((D1U...UD,)") to show.

Let ¢ state flow for a transition (v,w) € p(D).

Assume ¢ non-Zeno.

Finite number, m, of switches between D;, say D;,Dj,,...,D

im-

Transition (v,w) belonging to ¢ can be simulated piecewise by m
repetitions of Dy U...UDp:

NN 15.610/12: Diflerentiakaigebraic Dynamic Provine IR

[(D1uU...UD,) o

[Dl¢

diff.trafo. = there is an equivalent DNF Dy V --- VvV D, of D. (>)
p(D) 2 p((D1U...UD,)") obvious

p(D) C p((D1U...UD,)") to show.

Let ¢ state flow for a transition (v,w) € p(D).

Assume ¢ non-Zeno.

Finite number, m, of switches between D;, say D;,Dj,,...,D

im-

Transition (v,w) belonging to ¢ can be simulated piecewise by m
repetitions of Dy U...UDp:

@ Each piece selects the respective part D,

NN 15.610/12: Differentiakaigebraic Dynamic Provine. S

- [E]g
- [Dl¢
- (D)¢
= (&)

where “D — £" in FOLg

e Immediate consequence of diff.trafo. and semantics of modalities. @

O

F[Dlx FI[DAX]

- [Dl¢

@ Left premiss = every flow ¢ that satisfies D also satisfies x all along
the flow, i.e., ¢ = x.

F[Dlx FI[DAX]

- [Dl¢

@ Left premiss = every flow ¢ that satisfies D also satisfies x all along
the flow, i.e., ¢ = x.

@ Thus, ¢ =D implies ¢ =D A x

F[Dlx FI[DAX]

- [Dl¢

@ Left premiss = every flow ¢ that satisfies D also satisfies x all along
the flow, i.e., ¢ = x.

@ Thus, ¢ =D implies ¢ =D A x

@ Right premiss entails the conclusion.

FVYYyy .. Vg (X — F/gé . ZZ)

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ Let v satisfy premiss and antecedent of conclusion.

F YOy L Yy (x — F’fé.)

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ Let v satisfy premiss and antecedent of conclusion.

e Diff.trafo. = assume F in DNF. Consider disjunct G of F with
vEG. o

YOy (= F)

/
Xn

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ Let v satisfy premiss and antecedent of conclusion.

e Diff.trafo. = assume F in DNF. Consider disjunct G of F with
vEG. o

@ F continuous invariant if, say, each conjunct of G is.

YOy (= F)

/
Xn

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ Let v satisfy premiss and antecedent of conclusion.

e Diff.trafo. = assume F in DNF. Consider disjunct G of F with
vEG. o

@ F continuous invariant if, say, each conjunct of G is.

@ Assume conjunct is ¢ > 0 (accordingly for ¢ > 0).

F YOy L Yy (x — F’fé.)

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

Let v satisfy premiss and antecedent of conclusion.

Diff.trafo. = assume F in DNF. Consider disjunct G of F with
vEG. o

F continuous invariant if, say, each conjunct of G is.

Assume conjunct is ¢ > 0 (accordingly for ¢ > 0).
Let o : [0, r] — States flow with ¢ =3y (x’ = 0 A x) and »(0) = v.

F YOy L Yy (x — F'Q.)

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ Let v satisfy premiss and antecedent of conclusion.

e Diff.trafo. = assume F in DNF. Consider disjunct G of F with
vEG. o

@ F continuous invariant if, say, each conjunct of G is.

@ Assume conjunct is ¢ > 0 (accordingly for ¢ > 0).
@ Let ¢ : [0, r] — States flow with ¢ = 3y (x' =0 A x) and ¢(0) = v.
= @ E3dyx thusv = F,ie, ¢ >0 holds at v.

F YOy L Yy (x — F'Q.)

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ Let v satisfy premiss and antecedent of conclusion.

e Diff.trafo. = assume F in DNF. Consider disjunct G of F with
v E G. o

@ F continuous invariant if, say, each conjunct of G is.

@ Assume conjunct is ¢ > 0 (accordingly for ¢ > 0).

@ Let ¢ : [0, r] — States flow with ¢ = 3y (x' =0 A x) and ¢(0) = v.
= @ E3dyx thusv = F,ie, ¢ >0 holds at v.

@ Assume duration r > 0 (otherwise v = ¢ > 0 already holds).

F YOy L Yy (x — F'Q.)

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ Let v satisfy premiss and antecedent of conclusion.

e Diff.trafo. = assume F in DNF. Consider disjunct G of F with
v E G. o

@ F continuous invariant if, say, each conjunct of G is.

@ Assume conjunct is ¢ > 0 (accordingly for ¢ > 0).

@ Let ¢ : [0, r] — States flow with ¢ = 3y (x' =0 A x) and ¢(0) = v.
= @ E3dyx thusv = F,ie, ¢ >0 holds at v.

@ Assume duration r > 0 (otherwise v = ¢ > 0 already holds).

@ Show ¢ = c > 0.

FVYYyy .. Vg (X — F/gé . .9',’)

Xn

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ By contradiction suppose there was a ¢ € [0, r] where ¢(¢) = ¢ < 0.

YOy (= F)

Xn

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ By contradiction suppose there was a ¢ € [0, r] where ¢(¢) = ¢ < 0.
= h:[0,r] = R; h(t) = [c],) satisfies h(0) > 0 > h(¢),
because v = ¢ > 0 by antecedent.

YOy (= F)

Xn

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ By contradiction suppose there was a ¢ € [0, r] where ¢(¢) = ¢ < 0.
= h:[0,r] = R; h(t) = [c],) satisfies h(0) > 0 > h(¢),
because v = ¢ > 0 by antecedent.

@ ¢ is of order of ¢’: ordy ¢ > 1, ord, p = co for unchanged z.

F YOy L Yy (x — F'Q.)

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ By contradiction suppose there was a ¢ € [0, r] where ¢(¢) = ¢ < 0.
= h:[0,r] = R; h(t) = [c],) satisfies h(0) > 0 > h(¢),
because v = ¢ > 0 by antecedent.

@ ¢ is of order of ¢’: ordy ¢ > 1, ord, p = co for unchanged z.

@ By a-renaming, ¢’ cannot contain quantified variables y, hence, ¢ is
not required to be of any order in y.

YOy (= F)

/
Xn

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ By contradiction suppose there was a ¢ € [0, r] where ¢(¢) = ¢ < 0.
= h:[0,r] = R; h(t) = [c],) satisfies h(0) > 0 > h(¢),
because v = ¢ > 0 by antecedent.

@ ¢ is of order of ¢’: ordy ¢ > 1, ord, p = co for unchanged z.

@ By a-renaming, ¢’ cannot contain quantified variables y, hence, ¢ is
not required to be of any order in y.

@ Value of ¢ defined along ¢, as x guards against zeros division.

YOy (= F)

/
Xn

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ By contradiction suppose there was a ¢ € [0, r] where ¢(¢) = ¢ < 0.
= h:[0,r] = R; h(t) = [c],) satisfies h(0) > 0 > h(¢),
because v = ¢ > 0 by antecedent.

@ ¢ is of order of ¢’: ordy ¢ > 1, ord, p = co for unchanged z.

@ By a-renaming, ¢’ cannot contain quantified variables y, hence, ¢ is
not required to be of any order in y.

@ Value of ¢ defined along ¢, as x guards against zeros division.
@ Thus, by derivation lemma, h is continuous on [0, r] and differentiable
at every ¢ € (0, r). o

O
~ AndréPlatzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving | 45 /63

F Yy, . Wk (x — F"91)

[Fyr ..y x]F - [Elyl..Eka(Xl—01/\../\x,’,:0,,/\x)]F

@ Mean value theorem = there is £ € (0, () such that

T(6)- (- 0) =0 - ho) <0

F Yy, . Wk (x — F"91)

[Fyr ..y x]F - [Elyl..Eka(Xl—01/\../\x,’,:0,,/\x)]F

@ Mean value theorem = there is £ € (0, () such that

T(6)- (- 0) =0 - ho) <0

>O

F Yy, . Wk (x — F"91)

[Fyr ..y x]F - [Elyl..Eka(Xl—01/\../\x,’,:0,,/\x)]F

@ Mean value theorem = there is £ € (0, () such that

T(6)- (- 0) =0 - ho) <0

>O

dh(t)

deriv.lem
0>?(§) = [

F Yy, . Wk (x — F"’l)

[Fyr ..y x]F - [Elyl..Eka(Xl—01/\../\x,’,:0,,/\x)]F

@ Mean value theorem = there is £ € (0, () such that

T(6)- (- 0) =0 - ho) <0

>O

dh(t) deriv.lem diff .subst
@ =" 5 [V ey

because ¢ = Jy (X' = 0 A x) so that §(£); = x" = 0 A x for
some u € R and because y’ does not occur and y ¢ c.

0>

F VO L Yy (x — F’fé.)

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ Mean value theorem = there is £ € (0, () such that

T(6)- (- 0) =0 - ho) <0
>0

0> %(tt)(f) deriélem IIC/]]¢(§) diff . subst |[/x/]]<p(§)”
because ¢ = Jy (X' = 0 A x) so that §(£); = x" = 0 A x for
some u € R and because y’ does not occur and y é&c.
e Contradiction: by premiss ¢ = Vy (x — c » > 0) as V* comprises all
changed variables.

F VO L Yy (x — F’fé.)

BEyr. v x]FE By 3w (X =00 A A X, =600 AX)]F

@ Mean value theorem = there is £ € (0, () such that

T(6)- (- 0) =0 - ho) <0
>0

0> %(tt)(f) deriélem IIC/]]¢(§) dlffiubst |[/x/]]<p(§)”
because ¢ = Jy (X' = 0 A x) so that §(£); = x" = 0 A x for
some u € R and because y’ does not occur and y ¢ c.
e Contradiction: by premiss ¢ = Vy (x — c » > 0) as V* comprises all
changed variables. For §({); = x, we have ?(&), F d? >0
~ AndréPlatzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving | 46 /63

F 3e>0Vy, vk (WF A X — (F' > 5)2' : zZ)

By, vk (x{ = 1A AX) = 00 A ~F)Ix = 3y, yie (X{ = 1A, AXxy = 0, A X)) F

@ Let v satisfy premiss and antecedent of conclusion.

F >0y, vk (FF A x — (F' > 5) ”)

By, Y (x] = O1A AXL =0 A~F)x E 3y, v (X = 91/\, Axh =0, NX))F

@ Let v satisfy premiss and antecedent of conclusion.
o After a-renaming, ¢ fresh, thus v = V*(=F A x — (F' > s)z,).

F >0y, vk (FF A x — (F' > 5) ”)

By, Y (x] = O1A AXL =0 A~F)x E 3y, v (X = 91/\, Axh =0, NX))F

@ Let v satisfy premiss and antecedent of conclusion.
o After a-renaming, ¢ fresh, thus v = V*(=F A x — (F' > 6)2,).

@ We required Lipschitz-continuity. Global Picard-Lindelof theorem =
there is a global solution of arbitrary duration r > 0.

F >0y, vk (FF A x — (F' > 5) ”)

By, Y (x] = O1A AXL =0 A~F)x E 3y, v (X = 91/\, Axh =0, NX))F

@ Let v satisfy premiss and antecedent of conclusion.
o After a-renaming, ¢ fresh, thus v = V*(=F A x — (F' > 6)2,).

@ We required Lipschitz-continuity. Global Picard-Lindelof theorem =
there is a global solution of arbitrary duration r > 0.

@ Let ¢ = x’ = 0 start in v of some duration r > 0.

F >0y, vk (FF A x — (F' > 5) ”)
By, Y (x] = O1A AXL =0 A~F)x E 3y, v (X = 91/\, Axh =0, NX))F

@ Let v satisfy premiss and antecedent of conclusion.
o After a-renaming, ¢ fresh, thus v = V*(=F A x — (F' > s)z,).

@ We required Lipschitz-continuity. Global Picard-Lindelof theorem =
there is a global solution of arbitrary duration r > 0.

@ Let ¢ = x’ = 0 start in v of some duration r > 0.

o If there is ¢ with ¢(¢) = F, then by antecedent, until (including,
as ~F contains closure of =F) “first” (, x holds during ¢.

F >0y, vk (FF A x — (F' > 5) ”)

By, Y (x] = O1A AXL =0 A~F)x E 3y, v (X = 91/\, Axh =0, NX))F

@ Let v satisfy premiss and antecedent of conclusion.
o After a-renaming, ¢ fresh, thus v = V*(=F A x — (F' > s)z,).

@ We required Lipschitz-continuity. Global Picard-Lindelof theorem =
there is a global solution of arbitrary duration r > 0.

@ Let ¢ = x’ = 0 start in v of some duration r > 0.

o If there is ¢ with ¢(¢) = F, then by antecedent, until (including,
as ~F contains closure of =F) “first” (, x holds during ¢.

@ Hence, restriction of ¢ to [0,(] is flow for v = (X' =0 A x)F
O
~ André Platzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving 47 /63

F 3e>0vVy1, vk (<F Ax — (F =)3 0)

[By1, vk (x{ = 1A AX) = 00 A ~F)Ix = 3y, v (X{ = 1A, AXxpy = 0, A X)) F

@ If there is no such (, extending ¢ by larger r will make F true:

F 3e>0vVy1, vk (<F Ax — (F =)3 0)

3y, Y (x] = O/ AXL = 0p A~F)Ix B By, v () = 01N, AX, = 0, A X)) F

@ If there is no such (, extending ¢ by larger r will make F true:

@ Thus ¢ = =F A x and, by premiss, ¢ = F’f(, > ¢, because V*
comprises all changed variables.

F 3e>0vVy1, vk (<F Ax — (F =)3 0)

3y, Y (x] = O/ AXL = 0p A~F)Ix B By, v () = 01N, AX, = 0, A X)) F

@ If there is no such (, extending ¢ by larger r will make F true:

@ Thus ¢ = =F A x and, by premiss, ¢ = F’f(, > ¢, because V*
comprises all changed variables.

o F'%, > ¢ is a conjunction.

F 3e>0vVy1, vk (<F Ax — (F =)3 0)

3y, Y (x] = O/ AXL = 0p A~F)Ix B By, v () = 01N, AX, = 0, A X)) F

@ If there is no such (, extending ¢ by larger r will make F true:

@ Thus ¢ = =F A x and, by premiss, ¢ = F’f(, > ¢, because V*
comprises all changed variables.

° F’Z, > ¢ is a conjunction.

@ Consider one of its conjuncts c’g, > ¢ belonging to ¢ > 0 (others
similar).

F >0y, vk (RF A x — (F' > 5) . ")

By, Y (x] = O/ AXL =0 A~F)x B 3y, v (X = 91/\, Axh =0, N X))F

@ If there is no such (, extending ¢ by larger r will make F true:

@ Thus ¢ = =F A x and, by premiss, ¢ = F’ﬁ, > ¢, because V*
comprises all changed variables.

o F'%, > ¢ is a conjunction.

@ Consider one of its conjuncts c , > ¢ belonging to ¢ > 0 (others
similar).

@ Again, ¢ of the order of ¢’ and value of ¢ defined along ¢, because
@ E x and x guards against zeros.

O
~ AndréPlatzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving | 48 /63

F 3e>0Yyy, yi (=F A x — (F' > e)ﬁ}. Oy

Xn

[3y1, v (X{ = 01/, AX) = 00 A ~F)x b Gy, yi (xp = 018, AX} = 00 A X)) F

@ By mean-value theorem, derivation lemma & diff.subst., we conclude
for each ¢ € [0, r] that for some ¢ € (0, () o

[l — [ely0) = %56 (C — 0)

F 3e>0Yyy, yi (=F A x — (F' > e)ﬁ}.)

[3y1, v (X{ = 01/, AX) = 00 A ~F)x b Gy, yi (xp = 018, AX} = 00 A X)) F

@ By mean-value theorem, derivation lemma & diff.subst., we conclude
for each ¢ € [0, r] that for some ¢ € (0, () o

[elo() — [0y = I€eD56) (€ = 0) = ¢l o)

- 3e>09 0y, yi (RF A X = (F >)% 0)

[3}’1;)/k (X{ = 91/\5/\Xn - 0 A NF)]X l_ <E|y17.yk (Xl - 91/\5/\XI/1 = 0" /\X)>F

@ By mean-value theorem, derivation lemma & diff.subst., we conclude
for each ¢ € [0, r] that for some ¢ € (0, () o

[elo() — [0y = I€eD56) (€ = 0) = ¢l o)

[c]

o As [e],(o) > 0 we have for all ¢ >][_]I% that ¢(¢) = ¢ > 0 and
©(0

o(r) = c>0,even o(r) = c>0.

F 3e>0Yyy, yi (=F A x — (F' > 5)2.)
By, vk (g = 1A A = 00 A~F)Ix = Gy, vk (5 = 018, AX) = 00 A X)) F

@ By mean-value theorem, derivation lemma & diff.subst., we conclude
for each ¢ € [0, r] that for some ¢ € (0, () o

[elye) — [l o) = [% D) (¢ = 0) = el o

[l >
o As [e],(o) > 0 we have for all ¢ > oo that ¢(¢) = ¢ > 0 and
o(r) = c>0,even o(r) = c>0.

@ By extending r, all literals ¢ > 0 of one conjunct of F are true, which
concludes the proof, because, until F finally holds, ¢ = x is implied

by antecedent =above I

F3e>0YVyr ..y (FFAXx — (F' > 5)2- : i/)

By (g =0N . AX, =0, A~F)IxE Oy oy (x{=00A .. AX, =0,

o With quantifiers 9y we prove slightly stronger statement, because y
is quantified universally in the premiss (and antecedent):

F3e>0YVyr ..y (FFAXx — (F' > 5)2- : i/)

By (g =0N . AX, =0, A~F)IxE Oy oy (x{=00A .. AX, =0,

o With quantifiers 9y we prove slightly stronger statement, because y
is quantified universally in the premiss (and antecedent):

@ F reachable for all choices of y that respect x (not only one).

F3e>0YVyr ..y (FFAXx — (F' > 5)2- : i/)

By (g =0N . AX, =0, A~F)IxE Oy oy (x{=00A .. AX, =0,

o With quantifiers 9y we prove slightly stronger statement, because y
is quantified universally in the premiss (and antecedent):

@ F reachable for all choices of y that respect x (not only one).

@ By antecedent, there is a u € R such that v,/ E x.

F3e>0YVyr ..y (FFAXx — (F' > 5)2- : i/)

By (g =0N . AX, =0, A~F)IxE Oy oy (x{=00A .. AX, =0,

o With quantifiers 9y we prove slightly stronger statement, because y
is quantified universally in the premiss (and antecedent):

@ F reachable for all choices of y that respect x (not only one).
@ By antecedent, there is a u € R such that v,/ E x.

@ Hence, vy’ satisfies assumptions of quantifier-free case.

F3e>0YVyr ..y (FFAXx — (F' > 5)2- : i/)

By (g =0N . AX, =0, A~F)IxE Oy oy (x{=00A .. AX, =0,

With quantifiers dy we prove slightly stronger statement, because y
is quantified universally in the premiss (and antecedent):

F reachable for all choices of y that respect x (not only one).
By antecedent, there is a u € R such that v/ E x.

Hence, v, satisfies assumptions of quantifier-free case.

Thus, vy = (X' =0 A X)F,

F3e>0YVyr ..y (FFAXx — (F' > 5)2- : z/)

By (g =0N . AX, =0, A~F)IxE Oy oy (x{=00A .. AX, =0,

With quantifiers dy we prove slightly stronger statement, because y
is quantified universally in the premiss (and antecedent):

F reachable for all choices of y that respect x (not only one).

By antecedent, there is a u € R such that v/ E x.

Hence, v, satisfies assumptions of quantifier-free case.

Thus, vy = (X' =0 A X)F,

Hence v = (3y (X' = 0 A x))F using u constantly as the value for the
quantified variable y during the evolution.

O
"~ AndréPlatzer (CMU) 15-819/12: Differential-algebraic Dynamic Proving | 50 /63

© Restricting Differential Invariants

F(x—F)

Xx— FE[X =0AX]F

- F) F(FAx—F)

x— FF[xX'=0AX]F X — FF[xX'=60AX]F

F(x—F)

Xx— FE[X =0AX]F

Example (Restrictions)

FVx(x><0—2x-1<0)

F(FAXx— F))

x*<0F[x¥=1]x*<0

x— FE[X=0AX]F

F(x—F) F(FAx—F)
x— FF[xX'=0AX]F X — FF[xX'=60AX]F
Example (Restrictions)
X Xo+t
FVx(x?<0—2x-1<0) A
XX<0F [=1]x2 <0 £ =
0 - t

F(x—F)

Xx— FE[X =0AX]F

Example (Restrictions are unsound nonsense!)
X Xo+t
FVx(x?<0—2x-1<0) A
XX<0F [=1]x2 <0 £ =
0 - t

FVyr... Vv (FAX — F’zi.)

“eul
Xn

Byr 3 x]FE By 3y (x] =01 A - A X, =0, A X)]F

@ Proof similar to diff.inv.

F open

V1. Yy (FA X — F’z}.)

“eul
Xn

Byr 3 x]FE By 3y (x] =01 A - A X, =0, A X)]F

@ Proof similar to diff.inv.
@ Except that assuming ¢(¢) = —F only yields h(0) > 0 > h((),

F open

V1. Yy (FA X — F’z}.)

“eul
Xn

Byr 3 x]FE By 3y (x] =01 A - A X, =0, A X)]F

@ Proof similar to diff.inv.
@ Except that assuming ¢(() = —=F only yields h(0) > 0 > h((),
@ which does not lead to a contradiction.

F open

V1. Yy (FA X — F’ﬁ;.)

el
Xn

Byt I x]FEByr. 3 (X =01 A - Axh =0, AX)]F

@ Proof similar to diff.inv.
@ Except that assuming ¢(() = —=F only yields h(0) > 0 > h((),
@ which does not lead to a contradiction.

F open

@ F open = distance to OF is positive in ©(0)

FVy... Yy (FAx — F/ﬁ}.)

“eul
Xn

Byt I x]FEByr. 3 (X =01 A - Axh =0, AX)]F

Proof similar to diff.inv.
Except that assuming ¢(¢) = —F only yields h(0) > 0 > h((),
which does not lead to a contradiction.

F open

F open = distance to OF is positive in ¢(0)
Thus h(0) > 0 > h(¢), and the contradiction arises accordingly.

Wy Yy (FAx — (F > 0)2.)

)
Xn

Byi..c v x]FEEByr... 3 (X =01 A - Axh =60, Ax)]F

@ Repeating argument for diff.inv., assume F = ¢ > 0.

Wy Yy (FAx — (F > 0)2.)

)
Xn

Byi..c v x]FEEByr... 3 (X =01 A - Axh =60, Ax)]F

@ Repeating argument for diff.inv., assume F = ¢ > 0.

@ By contradiction suppose there was a ¢ € [0, r] where ¢(¢) = ¢ < 0.

Wy Yy (FAx — (F > 0)2.)

)
Xn

Byi..c v x]FEEByr... 3 (X =01 A - Axh =60, Ax)]F

@ Repeating argument for diff.inv., assume F = ¢ > 0.

@ By contradiction suppose there was a ¢ € [0, r] where () = ¢ < 0.
@ Let ¢ € [0, r] infimum of these ¢,

Wy Yy (FAx — (F > 0)2.)

)
Xn

Byi..c v x]FEEByr... 3 (X =01 A - Axh =60, Ax)]F

@ Repeating argument for diff.inv., assume F = ¢ > 0.

@ By contradiction suppose there was a ¢ € [0, r] where ¢(¢) = ¢ < 0.
@ Let ¢ € [0, r] infimum of these ¢,
@ Hence, ¢(¢) = ¢ = 0 by continuity.

Wy Yy (FAx — (F > 0)2...%)

!
Xn

Byi..c v x]FEEByr... 3 (X =01 A - Axh =60, Ax)]F

@ Repeating argument for diff.inv., assume F = ¢ > 0.

@ By contradiction suppose there was a ¢ € [0, r] where () = ¢ < 0.
@ Let ¢ € [0, r] infimum of these ¢,
@ Hence, ¢(¢) = ¢ = 0 by continuity.
= h:[0,r] = R; h(t) = [c],) satisfies h(0) >0 = h(¢),
because v = ¢ > 0 by antecedent.

Wy Yy (FAx — (F > 0)2...0")

!
Xn

Byi..c v x]FEEByr... 3 (X =01 A - Axh =60, Ax)]F

@ Repeating argument for diff.inv., assume F = ¢ > 0.

@ By contradiction suppose there was a ¢ € [0, r] where () = ¢ < 0.
@ Let ¢ € [0, r] infimum of these ¢,
@ Hence, ¢(¢) = ¢ = 0 by continuity.
= h:[0,r] = R; h(t) = [c],) satisfies h(0) >0 = h(¢),
because v = ¢ > 0 by antecedent.

@ Repeating argument with derivation lemma, h continuous on [0, r]
and differentiable at every £ € (0, r) with a derivative of

diff. subs
59 (€) = ['5e) "Iy as 0 b= X = 6. o
]

Wy Yy (FA Y — (F > 0)2. On)

el
Xn

Byi. I x]FFE By 3 (X =01 A Axh =60, AN X)]F

@ Mean value theorem = there is { € (0, () such that

dh(e) _
S0 (=9 = hO — hO)

>0

Wy Yy (FA Y — (F > 0)2. On)

el
Xn

Byi. I x]FFE By 3 (X =01 A Axh =60, AN X)]F

@ Mean value theorem = there is { € (0, () such that

9 (=0 = o)~ HO) <0

>0

Wy Yy (FA Y — (F > 0)2...%)

%
Xn

Byi. I x]FFE By 3 (X =01 A Axh =60, AN X)]F

@ Mean value theorem = there is { € (0, () such that

T6) (-9 =h0) - ho) <0

>0

I (€)= 1) <

Wy Yy (FA Y — (F > 0)21..%)

%
Xn

Byi. I x]FFE By 3 (X =01 A Axh =60, AN X)]F

@ Mean value theorem = there is { € (0, () such that

T6) (-9 =h0) - ho) <0

>0

I (€)= 1) <

o Contradiction: by premiss 3(¢) = %, > 0, as the flow
satisfies ¢ = x and ¢(§) = ¢ > 0, because ¢ > £ is the infimum of
the counterexamples ¢ with () = ¢ < 0.

O
"~ AndréPlatzer (CMU) | 15.810/12: Differential-algebraic Dynamic Proving 54 /63

Example (Any differential invariant restriction rule)

x>2E X =xx> %

Example (Any differential invariant restriction rule)

FVx(x >3 —x3>0)
x>FE X =xx> %

Example (Any differential invariant restriction rule)

*
FVx(x >3 —x3>0)
x>FE X =xx> %

Example (Any differential invariant restriction rule)
X
*
FVx(x >3 —x3>0)
x>FE X =xx> %

@ Deductive Power

Does it make a difference if we have propositional operators?

Does it make a difference if we have propositional operators?

The deductive power of differential induction with atomic equations is
identical to the deductive power of differential induction with propositional
combinations of polynomial equations: Formulas are provable with
propositional combinations of equations as differential invariants iff they
are provable with only atomic equations as differential invariants.

“differential induction for '="= differential induction for logic of '=""

@ Assume differential invariant F is in NNF.

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (pr—p2)(q1— q2) =0.

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (pr—p2)(q1 — q2) = 0.
o F' =pi =p)Aq;=q,implies
((p1 = p2)(a1 — @2))" = (p1 — P2)(q1 — @2) + (P1 — P2) (a1 — @2)

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (pr—p2)(q1 — q2) = 0.
o F'' =p| =p)Aq;=q,implies
((p1 = p2)(a1 — @2))" = (p1 — P2)(q1 — @2) + (P1 — P2) (a1 — @2)

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (pr—p2)(q1 — q2) = 0.
o F' =pi =p)Aq;=q,implies
((p1 = p2)(a1 — @2))" = (p1 — P2)(q1 — @2) + (P1 — P2) (a1 — @)

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (pr—p2)(q1 — q2) = 0.
o F' =pi =p)Aq;=q,implies
((pr = p2)(q1 — @2))" = (p1 — P3)(q1 — @2) + (1 — P2)(q1 — 43) =0

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (pr—p2)(q1 — q2) = 0.
o F' =pi =p)Aq;=q,implies
((pr = p2)(q1 — @2))" = (p1 — P3)(q1 — @2) + (1 — P2)(q1 — 43) =0
® F=p1=p2Aq=qoequivalent to (p1 — p2)* + (q1 — 42)* = 0.

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (p1—p2)(q1 — q2) =0.
o F' =pi =p)Aq;=q,implies
((pr = p2)(q1 — @2))" = (p1 — P3)(q1 — @2) + (1 — P2)(q1 — 43) =0
® F=p1=p2Aq=qoequivalent to (p1 — p2)* + (q1 — 42)* = 0.
o F'=p| =p5Aqi=q,implies
2(p1 = p2)(P1 — P2) + 2(q1 — q2) (91 — %)

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (p1—p2)(q1 — q2) =0.
o F' =pi =p)Aq;=q,implies
((pr = p2)(q1 — @2))" = (p1 — P3)(q1 — @2) + (1 — P2)(q1 — 43) =0
® F=p1=p2Aq=qoequivalent to (p1 — p2)* + (q1 — 42)* = 0.
o F'=pl =psAqgi=q,implies
2(p1 = p2)(Py — P2) + 2(q1 — @2)(q1 — 02)

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (p1—p2)(q1 — q2) =0.
o F' =pi =p)Aq;=q,implies
((pr = p2)(q1 — @2))" = (p1 — P3)(q1 — @2) + (1 — P2)(q1 — 43) =0
® F=p1=p2Aq=qoequivalent to (p1 — p2)* + (q1 — 42)* = 0.
e F'=p| =psAqg;=q,implies
2(p1 = p2)(Py — P2) +2(q1 — @2) (a1 — 02)

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (p1—p2)(q1 — q2) =0.
o F' =pi =p)Aq;=q,implies
((pr = p2)(q1 — @2))" = (p1 — P3)(q1 — @2) + (1 — P2)(q1 — 43) =0
® F=p1=p2Aq=qoequivalent to (p1 — p2)* + (q1 — 42)* = 0.
o F'=p| =p5Aqi=q,implies
2(p1 = p2)(Py — P2) +2(q1 — @2) (g1 — 92) =0

@ Assume differential invariant F is in NNF.

@ F=p1 =pV g1 = q equivalent to
o (pr—p2)(q1 — q2) = 0.
o F' =pi =p)Aq;=q,implies
((pr = p2)(q1 — @2))" = (p1 — P3)(q1 — @2) + (1 — P2)(q1 — 43) =0
® F=p1=prAqL= q equivalent to (p1 — p2)® + (g1 — q2)?> = 0.
o F'=p| =p5Aqi=q,implies
2(p1 — p2)(Py — P2) +2(q1 — 92)(q1 — ¢5) = 0
@ F = —(p1 = p2) does not qualify as differential invariant.

Does it make a difference if we have propositional operators?

Does it make a difference if we have propositional operators?

The deductive power of differential induction with arbitrary formulas
exceeds the deductive power of differential induction with atomic formulas:
All DAL formulas that are provable using atomic differential invariants are
provable using general differential invariants, but not vice versa!

“differential induction for atomic formulas < general differential induction”

x>0ANy>0F[X=xy ANy =xy](x>0Ay >0)

FVxVy(x>0Ay >0—xy>0Axy >0)

x>0ANy>0F[X=xy ANy =xy](x>0Ay >0)

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Suppose single polynomial p(x, y) such that p(x,y) > 0is a
differential invariant. The we have valid formulas:

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Suppose single polynomial p(x, y) such that p(x,y) > 0is a
differential invariant. The we have valid formulas:

@ x>0Ay>0— p(x,y) >0, as differential invariants hold in prestate

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Suppose single polynomial p(x, y) such that p(x,y) > 0is a
differential invariant. The we have valid formulas:

@ x>0Ay>0— p(x,y) >0, as differential invariants hold in prestate

Q p(x,¥y) >0— x>0Ay >0, as differential invariant implies
postcondition

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Suppose single polynomial p(x, y) such that p(x,y) > 0is a
differential invariant. The we have valid formulas:
@ x>0Ay>0— p(x,y) >0, as differential invariants hold in prestate
Q p(x,¥y) >0— x>0Ay >0, as differential invariant implies
postcondition

@ Hence x >0Ay >0« p(x,y) > 0 valid.

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Suppose single polynomial p(x, y) such that p(x,y) > 0is a
differential invariant. The we have valid formulas:

@ x>0Ay>0— p(x,y) >0, as differential invariants hold in prestate

Q p(x,¥y) >0— x>0Ay >0, as differential invariant implies
postcondition

@ Hence x >0Ay >0« p(x,y) > 0 valid.
@ Thus, p satisfies:

p(x,y) >0 for x >0,y >0, and, otherwise, p(x,y) <0 (QS)

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Assume p minimal total degree with property
p(x,y) >0 for x >0,y >0, and, otherwise, p(x,y) <0 (QS)

@ p(x,0) is univariate polynomial in x with zeros at all x > 0
= p(x,0) = 0 is the zero polynomial
=y divides p(x,y).
@ Accordingly, p(0,y) = 0 for all y, hence x divides p(x,y).
@ Thus, xy divides p.

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Assume p minimal total degree with property
p(x,y) >0 for x >0,y >0, and, otherwise, p(x,y) <0 (QS)

@ p(x,0) is univariate polynomial in x with zeros at all x > 0
= p(x,0) = 0 is the zero polynomial
=y divides p(x,y).
@ Accordingly, p(0,y) = 0 for all y, hence x divides p(x,y).
@ Thus, xy divides p.
° #;’_y) satisfies (QS) with smaller total degree than p,

oo

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0Ay>0F[X=xy Ay =xy](x>0Ay >0)

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0Ay>0F[X=xy Ay =xy](x>0Ay >0)

@ There is no polynomial p such that x >0Ay >0« p(x,y) =0,

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0Ay>0F[X=xy Ay =xy](x>0Ay >0)

@ There is no polynomial p such that x >0Ay >0« p(x,y) =0,

@ because only zero polynomial is zero on the full quadrant (0, o).

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0Ay>0F[X=xy Ay =xy](x>0Ay >0)

@ There is no polynomial p such that x >0Ay >0« p(x,y) =0,
@ because only zero polynomial is zero on the full quadrant (0, o).

@ x>0Ay >0« p(x,y) > 0is impossible for continuity reasons that
imply p(0,0) = 0, which is a contradiction.

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0Ay>0F[X=xy Ay =xy](x>0Ay >0)

@ There is no polynomial p such that x >0Ay >0« p(x,y) =0,

@ because only zero polynomial is zero on the full quadrant (0, o).

@ x>0Ay >0« p(x,y) > 0is impossible for continuity reasons that
imply p(0,0) = 0, which is a contradiction.

@ Same argument for any other sign condition that characterizes one
quadrant of R? uniquely.

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0Ay>0F[X=xy Ay =xy](x>0Ay >0)

@ There is no polynomial p such that x >0Ay >0« p(x,y) =0,
@ because only zero polynomial is zero on the full quadrant (0, o).

@ x>0Ay >0« p(x,y) > 0is impossible for continuity reasons that
imply p(0,0) = 0, which is a contradiction.

@ Same argument for any other sign condition that characterizes one
quadrant of R? uniquely.

@ So far, argument independent of actual dynamics

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0Ay>0F[X=xy Ay =xy](x>0Ay >0)

@ There is no polynomial p such that x >0Ay >0« p(x,y) =0,
@ because only zero polynomial is zero on the full quadrant (0, o).

@ x>0Ay >0« p(x,y) > 0is impossible for continuity reasons that
imply p(0,0) = 0, which is a contradiction.

@ Same argument for any other sign condition that characterizes one
quadrant of R? uniquely.

@ So far, argument independent of actual dynamics

@ Thus, still valid in the presence of arbitrary differential weakening.
O

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

x>0 y >0

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

x’:xy>0/

x>0 y >0

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

x’:xy>0/ \y’:xy>0

x>0 y >0

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

X’:xy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs
Xy > 0= (xy)Y Y

x! y/

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

X’:xy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs
xy >0 — ()7 0 =Xy +yx') 7T

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

X’:xy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs
xy >0 — ()3 7 = Xy +yx')7 5 = xyy + yxy

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

X’:xy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs
xy >0 — (xy)7) =Xy +yx')7) = xyy + yxy = (v + x)xy

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

X’:xy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs
xy >0 — ()30 3 =Xy +yxX)7 5 =xyy +yxy = (y + x)xy >0

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

X’:xy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs
xy >0 — ()30 3 =Xy +yxX)7 5 =xyy +yxy = (y + x)xy >0

oxy>0—>(y+x)xy>0

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

X’:xy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs
xy >0 — ()30 3 =Xy +yxX)7 5 =xyy +yxy = (y + x)xy >0
° xy>0—>(y+x)xy>0:x20Vy20

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

X’:xy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs
xy >0 — ()30 3 =Xy +yxX)7 5 =xyy +yxy = (y + x)xy >0
° xy>0—>(y+x)xy>0:x20Vy205—(—x>0/\—y>0)

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

@ Inductively, strengthening x needs to be a differential invariant:
xy >0

X’:xy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs

xy > 0= (xy)J 5 = (Xy +)75 = xyy +yxy = (y + x)xy >0
° xy>0—>(y+x)xy>O_XEOVyEOE—'(—x>0/\—y>0)
@ not provable by atomic differential induction/weakening (see above).

*

FVxVy(x>0Ay >0—xy>0Axy >0)
x>0ANy>0F[X=xy Ay =xy](x>0Ay >0)

Inductively, strengthening x needs to be a differential invariant:
xy >0

X’zxy>0/ \y’=xy>0

x>0 y >0

o Differential invariance of xy > 0 needs
xy >0 — ()30 3 =Xy +yxX)7 5 =xyy +yxy = (y + x)xy >0
xy>0—>(y+x)xy>O_XEOVyEOE—'(—x>0/\—y>0)

not provable by atomic differential induction/weakening (see above).

Circular dependencies for strengthening by x >0, y > 0, xy > 0,

Proof

Computer
Calculus Algebra Algebraic
Theorem Geometry
Proving
Logic Algebra Differential
Model Algebra
Checking

Logic-based
Verification of
Hybrid Systems

	Verification Calculus for Differential-algebraic Dynamic Logic
	Motivation for Differential Induction
	Derivations and Differentiation
	Differential Induction
	Motivation for Differential Saturation
	Differential Variants
	Compositional Verification Calculus
	Differential Transformation
	Differential Reduction & Differential Elimination
	Proof Rules

	Soundness
	Restricting Differential Invariants
	Deductive Power
	Appendix

