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continuous evolution along differential equations + discrete change
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Example (“Solving” differential equations)
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Example (“Solving” differential equations)
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Y1

X] = —vit+vacost + wxp
xé = Vo sin 1 — wxy
W= w—w

X constant/nilpotent dynamics v
X otherwise “no” solutions
v_ sound

challenging dynamics
X approximation errors
X unsound, ...see [PCO7]



V' challenging dynamics, e.g., curved flight
V" automatic verification
V' sound

L1 n
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“Property that remains true in the direction of the dynamics”

—_
-

I

-

-
-
-

v

-

-

)

A
»
El
‘

Iy

»

/4
¥
¥
e
#
1

4

3

N

~

- v v 0~

- ~ ~ =

- - -

-« <« < =

/
/
f
f
t
i
N
*

K

4

!
t
t
\
\
X
~

\ NN N —

\\\\\e(//

\\\\.74////

\\««,////
Ty

~ <«

- .

v e o~ %X



“Property that remains true in the direction of the dynamics”
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DAL = FOLg + ML '

Olldl =1
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DAL = FOLRr + DL 4+ DAP l

Id]l > 1
O |ld| > 1

[dliz—dg; d{g—wdg/\dégwdlvd{§4]||d|| >1 ;
Olld =1

-~

differential-algebraic program
= first-order completion of

hybrid programs



Example (Discrete Jump / DJ constraints)
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Example (Differential-algebraic / DA constraints)

xp=di Axy=dbo

x1=diAxhb=dr Ndj = —wdr N dy = wdy

di = —wdh ANd) =wdi Ndy >0

di = —d> A di =1 incompatible slope

(h>0—d =—dyAdy=d)A(dy <0— d =do Ad) = —dy)
—(d; = 5) what is the slope of di now?

Jw(df = —wdbh Adj =wdi A =1 <w < 1)

Vw (d] = —wdyr A dy =wdi) w cannot have all those slopes at once
Jdaa = d; s just true as no visible effects or constraints

Jw(df = —wdb ANdj =wdi A =1 <w < 1)V (d] < dj <2dy)

e X X o X @ X o ©
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We only allow change x :=6 or x’ in affirmative subformulas:

Formula G is affirmative subformula of first-order formula F, iff:

© G is a positive subformula of F, i.e., occurs with an even number of
negations, and

@ no variable y that occurs in G is in the scope of a universal quantifier
Vy of a positive subformula of F (or Jy of negative subformula of F)




@ DJ constraint: FOLR formula J over X with additional atomic
formulas of the form x : =6 where x € ¥, § € Trm(X).

@ The latter are called assignments and are only allowed in affirmative
subformulas of DJ-constraints that are not in the scope of a quantifier
for x of J.

@ DJ-constraint without assignments is called jump-free.

@ Variable x is (possibly) changed in J iff an assignment of the
form x:= 60 occurs in J.
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(x1:=01AN . Axp=0, Ax1 >0)V(x3: =01 A .. Axp:=0, Axg <0)

@ if x; > 0, then simultaneously changes x; to the respective 6;, and

@ if x; < 0, changes the x; to ¥;, instead.



(3= AN Ax:=0,Ax1 >0)V (x1:=U1 A .. Axp: =0y Axp <0)

@ if x; > 0, then simultaneously changes x; to the respective 6;, and
@ if x; < 0, changes the x; to ¥;, instead.

e if x;y =0, then no disjunct applies as evaluates to false so that no
jump is possible at all, which will deadlock the system.
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@ if x; > 0, then simultaneously changes x; to the respective 6;, and

@ if x; < 0, changes the x; to ¥;, instead.

e if x;y =0, then no disjunct applies as evaluates to false so that no
jump is possible at all, which will deadlock the system.

@ Overlapping cases as in (x:=x —1A x> 0)V x:=0 allow any
disjunct to take effect by a nondeterministic choice.



(3= AN Ax:=0,Ax1 >0)V (x1:=U1 A .. Axp: =0y Axp <0)

@ if x; > 0, then simultaneously changes x; to the respective 6;, and
@ if x; < 0, changes the x; to ¥;, instead.

e if x;y =0, then no disjunct applies as evaluates to false so that no
jump is possible at all, which will deadlock the system.

@ Overlapping cases as in (x:=x —1A x> 0)V x:=0 allow any
disjunct to take effect by a nondeterministic choice.

@ Quantifiers express unbounded discrete nondeterministic choices.

JurJus (e1 =u1 A e :=up AIA>03u>0 ()\dl = pu AN Adp = ,LLUQ))



@ DA-constraint: FOLg formula D over ¥ U Y/, in which symbols of ¥’
only occur in affirmative subformulas that are not in the scope of a
quantifier of D for that symbol.

o Y/ is the set of all differential symbols x(") with n € N for state
variables x € ¥. Write x’ for x(1) .

@ DA-constraint without differential symbols is called non-differential.
e Variable x is (possibly) changed in D iff x(") occurs in D for an n > 1.

@ ord, D is the highest order n € N of a differential symbol x(")
occurring in D, otherwise not defined.




(X =0Ax>0)V (¥ =—x*Ax<0)

@ ongoing continuous evolution respecting differential and
non-differential constraints during the whole evolution;
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(X =0Ax>0)V (¥ =—x*Ax<0)
@ ongoing continuous evolution respecting differential and
non-differential constraints during the whole evolution;
@ evolves along x’ = # while x > 0, evolves along x’ = —x? when x < 0
@ never allowed to enter the region where neither case applies (x = 0).



(X =0Ax>0)V (¥ =—x*Ax<0)
@ ongoing continuous evolution respecting differential and
non-differential constraints during the whole evolution;
@ evolves along x’ = # while x > 0, evolves along x’ = —x? when x < 0
@ never allowed to enter the region where neither case applies (x = 0).

@ Overlapping cases allow any disjunct to take effect by a
nondeterministic choice:

Jw(d) = —wdh Ady =wdy A—1<w < 1)V (d] = d} = 0)



(X =0Ax>0)V (¥ =—x*Ax<0)
@ ongoing continuous evolution respecting differential and
non-differential constraints during the whole evolution;
@ evolves along x’ = # while x > 0, evolves along x’ = —x? when x < 0
@ never allowed to enter the region where neither case applies (x = 0).

@ Overlapping cases allow any disjunct to take effect by a
nondeterministic choice:

Jw(d] = —~wdb Ady =wdi A =1 <w < 1)V (d] =dy=0)
@ Quantifiers express continuous nondeterministic choices:
Ju(dj = —(w+u)da Ady = (w+ u)dy A —0.1 < u<0.1)

expresses that the system follows a continuous evolution in which, at
each time, the differential equations are respected for some choice
of uin —0.1 < u < 0.1, possibly different at each point in time.

~ AndréPlatzer (CMU)  15-819/11: Differential-algebraic Dynamic Logic | 12/31



Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.
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Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.

x dp>0—3a(a<5Adi:=a>+1) what happensifd; <0
(d1>0/\d1'232+ )Vd <0

X di>0—x{=di Ax)=d)ANd{ =—wd>r what happens if d; <0

X (i >0Ax{=di Axy=do Nd] = —wdh) V (di <OAx =1)



D
J
a; 3
aupg

*

(0

(continuous DA-constraint)
(discrete DJ-constraint)
(seq. composition)
(nondet. choice)

(nondet. repetition)

} Kleene algebra




D (continuous DA-constraint)

J (discrete DJ-constraint)

a; 3 (seq. composition)

aup (nondet. choice) } Kleene algebra
a* (nondet. repetition)

TRM = (ctrl; fly)*
ctrl =(?||x — y|| > 5; Jaw:=a)
UQx =yl <5 d:=w(x—c)t)
fly =x'=d Nd] = —wds A d] = wd;

AN



D (continuous DA-constraint)

J (discrete DJ-constraint)

a; 3 (seq. composition)

aup (nondet. choice) } Kleene algebra
a* (nondet. repetition)

TRM = (ctrl; fly)*
ctrl =(?||x — y|| > 5; Jaw:=a)
UQx =yl <5 d:=w(x—c)t)
fly =x'=d Nd] = —wds A d] = wd;
Ny =€ Nel = —wer N e] = wey
A ...




D (continuous DA-constraint)

J (discrete DJ-constraint)

a; 3 (seq. composition)

aup (nondet. choice) } Kleene algebra
a* (nondet. repetition)

TRM = (ctrl; fly)*
ctrl =(?||x — y|| > 5; Jaw:=a)
UQx =yl <5 d:=w(x—c)t)
fly =x'=d Nd] = —wds A d] = wd;
Ny =€ Nel = —wer N e] = wey
A ...




conjunctive DA-constraints
DA-constraints

no DA-constraints

no DA-constraints, over N
general DA-programs

continuous dynamical systems
switched continuous dynamical systems
discrete dynamical systems

discrete while programs

hybrid dynamical systems

+ first-order dynamics



v gr= v = w when not changed
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@ In which state can we interpret dj = —wd> A dj = wdi?
@ Not in a single state, because derivatives not defined

@ Along flow, di makes sense and DA-constraint can be interpreted
locally.

¢ componentwise continuous on [0, r]: ¢(¢)(x) continuous in ¢ for x € X,
Differentially augmented state ¢(() of ¢ at ¢ € [0, r] agrees with ©(()
except that it assigns values to some x(") ¢ ¥':

M(C) if n-times continuously differentiable in t at ¢

() () = { o

undefined otherwise

@ is state flow of the order of D, iff value of each differential symbol
occurring in DA-constraint D is defined on [0, r]



Let o state flow of the order of DA-constraint D and duration r > 0.
¢ = D iff, for all ¢ € [0, r],

@ (¢) Er D using standard semantics =g of first-order real
arithmetic, and

(2] |[Z]|¢(C) = |[z]|¢(0) for all variables z that are not changed by D.
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Let o state flow of the order of DA-constraint D and duration r > 0.
¢ = D iff, for all ¢ € [0, r],

@ (¢) Er D using standard semantics =g of first-order real
arithmetic, and

@ [z];() = [z]5() for all variables z that are not changed by D.

@ Only variables whose differential symbols occur in D need
continuously differentiable values.

@ Quantified variables can change arbitrarily, even discontinuously

@ In Jux’ = u?, the value of u? (not u) varies continuously, because x’
does.

@ For r =0, atomic formulas with differential symbols take no effect
(true as positive).



(v,w) = x:=0 =

(V, W) E 61> 6, <

(v,w) = ¢A Y <=

(v,w) | = =

(v,w) |=de) =

(v,w) E Ixo =
where [z],

1., =41,
61], > [6-],
o)

and (v,w) = ¢
¢ does not hold

i, W) [= ¢ for all vy that agree with v
except for the value of x
(vx, w) = ¢ for some v, that agrees with v
except for the value of x

|[
[
(v,w) =
E w) =

= [z], for all variables z that are not changed in J.




p(D) = {(¢(0),¢(r)) : ¢ = D of order of D, duration r > 0}
p(T) = {(v,w) : (v,w) E T}
p(aUB) = p(a)Up(B)
p(a; B) = p(a)o p(B)

p(a*):{(v,w) thereis _ Pe) @) p(a)w}

V— V] — V2 e




© Air Traffic Control



e o e e













vsind

X1

K v cos v )




d>
vsind )
= vcost
d, =
K

X1




d) =

vcostd = dq

vsintd = do

UCcosg = e

using = e



x; =vcost) =d; y; =ucosg=e;

Xo =vsind =dy Yy, =using=ep

di = (vcosd)
dy = (vsind)’



1 at
x; =vcost) =d; y; =ucosg=e;

Xo =vsind =dy Yy, =using=ep

diy = (vcosd) = v/ cos ¥ + v(—sin )
dy = (vsind)’ = v'sind + v(cos )’



1 at
X} =vcost) =d; y; =ucoss=e

Xy =vsind =d, y,=using=e
dy = e] =
dy = &) =

di = (vcosd) = v/ cos¥ + v(—sin ) = —(vsind)w
dy = (vsind) = V'sind + v(cos9)y = (vcosid)w



e

S
Y2
4
Seal
]
d

1 Y1
X} =vcost) =d; y; =ucoss=e

xé=vsin19:d2 yé:using=e2
d{ == ei =
dé == eé =

di = (vecosd) = v cost + v(—sin¥) = —(vsind)w = —wd,
dy = (vsind) = V'sind + v(cos )Y = (veos?)w = wd;



1 Y1
X} =vcost) =d; y; =ucoss=e

Xy =vsind =d, y,=using=e
di = —wd> e] = — o0&

di = (vecosd) = v cost + v(—sin¥) = —(vsind)w = —wd,
dy = (vsind) = V'sind + v(cos )Y = (veos?)w = wd;



e

S
Y2
4
Seal
]
d

1 Y1
X} =vcost) =d; y; =ucoss=e

Xy =vsind =d, y,=using=e
di = —wd> e] = — o0&

di = (vecosd) = v cost + v(—sin¥) = —(vsind)w = —wd,
dy = (vsind) = V'sind + v(cos )Y = (veos?)w = wd;

v=|d| =4/d? + d?




n=e
X = da =€
d{ = —wdp e{ — 0€2
dé = wdl eé oel

di = (vecosd) = v/ cost? + v(—sin?)¥ = —(vsind)w = —wd,
dy = (vsind) = V'sind + v(cos )Y = (veos?)w = wd;

v=|d| =4/d? + d?













1 Y1

= —vit+vacost + wxp

wsintd — wxy

w—w



no more counterexamples but how to verify?

T Y1

= —vi+wve cos + wxo

Vo sin 1 — wxy

w—w




Y1

X] = —vit+vacost + wxp
xé = Vo sin 1 — wxy
W= w—w

Example (“Solving” differential equations)

1 . . .
— (Xlww €os tw — Vow €os tw sin 1 + vow €os tw cos tw sin ¥ — vy sin tw
ww

+ XoWwT SN tw — Vaw €os 1 €os two sin tw — vowV 1 — sin ¥ sin tw
+ vow cos ¥ cos tw sin tww + vow sin ¥ sin tw sin tw) ...

Xl(t) =




Y1

X] = —vit+vacost + wxp
xé = Vo sin 1 — wxy
W= w—w

Example (“Solving” differential equations)

V>0 — (xlww €os tw — Vow €os tw sin ¥ + vow cos tw cos tw sin 1 — vy sin tw
ww

+ XoWww SN tw — Vow €os 1 cos two sin tw — vawV 1 — sin ¥ sin tw
+ vow cos ¥ cos tw sin two + vow sin ¥ sin tw sin tw) ...




¢ = llx—ylI>>p* = (1 = y1)* + (2 = y2)* 2 p?
trm = free; entry, F(w)AG(w)
free = JwF(w) A JwG(w) A ¢

entry = will be derived later



There is an effective mapping ¢ such that the following diagram commutes:

HA —— DAP(X)
~ O

2 2
Q. States




ifferential-algebraic Dynamic Logic
Diff jal-algebraic D ic Logic DAL
@ Syntax
@ Semantics



DAL = FOLRr + DL l

[=] ]l = 1



DAL = FOLRr + DL 4+ DAP l

ld]l > 1

[ < —wdy Adb < wdr Vd] < 4]||d]| > 1




DAL = FOLRr + DL 4+ DAP l

[d1 = —db; di < —wdy A dé <wd; V d{ < 4] Hd” >1



DAL = FOLRr + DL 4+ DAP l

Id]l > 1
O |ld| > 1

[dliz—dg; d{g—wdg/\dégwdlvd{§4]||d|| >1 ;
Olld =1

-~

differential-algebraic program
= first-order completion of

hybrid programs



Countable set of predicate or function symbols along with natural numbers
as arities containing 0,1,+, -, /,=, <, >, >, < for reals




Countable set of predicate or function symbols along with natural numbers
as arities containing 0,1,+, -, /,=, <, >, >, < for reals

X for variable x € V
f(ty,...,tn) for function f/n € X of arity n > 0




Countable set of predicate or function symbols along with natural numbers
as arities containing 0,1,+, -, /,=, <, >, >, < for reals

¢ =
[a]o “all « reachables”
() “some « reachable”
p(ti, ..., tn) for predicate p/n € X of arity n > 0
- “not”
(o AY) “and”
(V) “or”
(6 — ) “implies”










Qa-span




Qa-span




Qa-span




Qa-span

compositional semantics!




viEh >0 = [0], > [0],

vEoAY <~— vE¢andv

v E ¢ <= v [= ¢ does not hold

v = [a]o <=  wlk¢ forall wwith (v,w) € p(a)
vE (o) <= wl=¢ forsome w with (v,w) € p(a)




We assume all divisions p/q in any formula are constraint ¢ are taken to
mean ¢ A g # 0.




Example (Zeno)
o (=-1Ad<a d:=d/2)"




Example (Zeno)
o (=-1Ad<a d:=d/2)"
o (x>0—-Xx"=-DA(x<0—-x"=1)Ay' =1




Example (Zeno)
o (=-1Ad<a d:=d/2)"
o (x>0—-Xx"=-DA(x<0—-x"=1)Ay' =1

State flow ¢ for DA-constraint D is non-Zeno, if there only is a finite
number of points in time where some variable needs to obey another
differential constraint of D than before the respective point in time:

Let D1V ---V D, be a disjunctive normal form of D, then flow

¢ : [0, r] — States is non-Zeno iff there are an m € N

and 0=¢(y < (1 <-+-<(m=randindices i1,...,im € {1,...,n} such
that ¢ respects Dj, on the interval [(x—1,(k], i-e., ¢lic, ;¢ F Di, for
all ke {1,...,m}.




A. Platzer.
Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput., 2008.
To appear.
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