André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

© Motivation

@ Differential-algebraic Programs
@ Design Motives

@ Syntax
@ Discrete Jump Constraints
@ Differential-algebraic Constraints
@ Differential-algebraic Programs
@ Semantics
@ Differential-algebraic Constraints
@ Discrete Jump Constraints
@ Differential-algebraic Programs

© Air Traffic Control

ifferential-algebraic Dynamic Logic
Diff jal-algebraic D ic Logic DAL
@ Syntax
@ Semantics

© Motivation

PEECIN
.

.
'

'III-.IIIII]
' '

continuous evolution along differential equations + discrete change

continuous evolution along differential equations + discrete change

T Y1

x; = —vitvacost + wxp
Xy = va sin) — wxq

V= w—w

continuous evolution along differential equations + discrete change

Y1

X] = —vit+vacost + wxp
xé = Vo sin 1 — wxy
W= w—w

Example (“Solving” differential equations)

1 . . .
— (Xlww €os tw — Vow €os tw sin 1 + vow €os tw cos tw sin ¥ — vy sin tw
ww

+ XoWwT SN tw — Vaw €os 1 €os two sin tw — vowV 1 — sin ¥ sin tw
+ vow cos ¥ cos tw sin tww + vow sin ¥ sin tw sin tw) ...

Xl(t) =

Y1

X] = —vit+vacost + wxp
xé = Vo sin 1 — wxy
W= w—w

Example (“Solving” differential equations)

V>0 — (xlww €os tw — Vow €os tw sin ¥ + vow cos tw cos tw sin 1 — vy sin tw
ww

+ XoWww SN tw — Vow €os 1 cos two sin tw — vawV 1 — sin ¥ sin tw
+ vow cos ¥ cos tw sin two + vow sin ¥ sin tw sin tw) ...

Y1

X] = —vit+vacost + wxp
xé = Vo sin 1 — wxy
W= w—w

X constant/nilpotent dynamics v
X otherwise “no” solutions
v_ sound

challenging dynamics
X approximation errors
X unsound, ...see [PCO7]

V' challenging dynamics, e.g., curved flight
V" automatic verification
V' sound

L1 n

= —v1+ve cos ¥ + wxo

Vo sin 1 — wxy

w—w

“Property that remains true in the direction of the dynamics”

—_
-

I

-

-
-
-

v

-

-

)

A
»
El
‘

Iy

»

/4
¥
¥
e
#
1

4

3

N

~

- v v 0~

- ~ ~ =

- - -

-« <« < =

/
/
f
f
t
i
N
*

K

4

!
t
t
\
\
X
~

\ NN N —

\\\\\e(//

\\\\.74////

\\««,////
Ty

~ <«

- .

v e o~ %X

“Property that remains true in the direction of the dynamics”

\\\\\‘\&(/

I v
S
Y/
e/
At
A
I
3
A

- 7 A

/
/
f
f
t
i
N
*

!
t
!
A
\
X
~

- v A

<
4

- ¢ A
U S N
“~ v vy v =« a4
«~ ~ ~ =« 4 4
- < =« <« 4

-« <« <« « 4 ¥

TRMEz<m TL-MC ViIix |V |x|V
= (Ax(TRM) — z < m) | TL-calculus X | X |V | .| X
E[TRM]z <m DL-calculus | v | v | X | V | X

E (AX(TRM) — z < m) | Tl-calculus | x | x | v

TRMEz<m TL-MC Vx| v x|V
.. X
E[TRM|z <m DL-calculus VI Vv x| v |7

DAL = DL + DAP |

© Motivation

@ Differential-algebraic Programs
@ Design Motives

@ Syntax
@ Discrete Jump Constraints
@ Differential-algebraic Constraints
@ Differential-algebraic Programs
@ Semantics
@ Differential-algebraic Constraints
@ Discrete Jump Constraints
@ Differential-algebraic Programs

© Air Traffic Control

ifferential-algebraic Dynamic Logic
Diff jal-algebraic D ic Logic DAL
@ Syntax
@ Semantics

@ Differential-algebraic Programs
@ Design Motives
@ Syntax
@ Discrete Jump Constraints
@ Differential-algebraic Constraints
@ Differential-algebraic Programs
@ Semantics
@ Differential-algebraic Constraints
@ Discrete Jump Constraints
@ Differential-algebraic Programs

DAL = FOLg + ML '

Olldl =1

DAL = FOLRr + DL l

[=]]l = 1

DAL = FOLRr + DL 4+ DAP l

ld]l > 1

[< —wdy Adb < wdr Vd] < 4]||d]| > 1

DAL = FOLRr + DL 4+ DAP l

[d1 = —db; di < —wdy A dé <wd; V d{ < 4] Hd” >1

DAL = FOLRr + DL 4+ DAP l

Id]l > 1
O |ld| > 1

[dliz—dg; d{g—wdg/\dégwdlvd{§4]||d|| >1 ;
Olld =1

-~

differential-algebraic program
= first-order completion of

hybrid programs

Example (Discrete Jump / DJ constraints)
o di:=—d>

Example (Discrete Jump / DJ constraints)
o di:=—d>
e di=—dh ANdh:=d;

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
@ di i =—dhb ANd1:=0

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)
o —(dy:=5)

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)
x —(di1:=5) what is really assigned to d; now?

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)
x —(di1:=5) what is really assigned to d; now?
o Ja(w:=a*Aa<5h)

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)
x —(di1:=5) what is really assigned to d; now?
o Ja(w:=a*Aa<5h)

o Vaw:=a?

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)
x —(di1:=5) what is really assigned to d; now?
o Ja(w:=a*Aa<5h)
x VYaw:=a? w can hardly assume all those values at once

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)
x —(di1:=5) what is really assigned to d; now?
o Ja(w:=a*Aa<5h)

2

X Yaw:=a w can hardly assume all those values at once

@ daa:=d;

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)
x —(di1:=5) what is really assigned to d; now?
o Ja(w:=a*Aa<5h)
x VYaw:=a? w can hardly assume all those values at once

X daa:=d; s just true as no visible effects or constraints

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)
x —(di1:=5) what is really assigned to d; now?
o Ja(w:=a*Aa<5h)
x VYaw:=a? w can hardly assume all those values at once
X daa:=d; s just true as no visible effects or constraints
0o d>0—Ja(a<5ANd:=a°+1)

Example (Discrete Jump / DJ constraints)
o di=—d»
@ di:=—-dyNdy:=d; simultaneous effect, rotate left by 7
X di:=—dyAdi:=0 incompatible jump
o (1 >0—-dii=—dbANdr:=d1)AN(d1 <0 — di:=db Adr:=—d1)
x —(di1:=5) what is really assigned to d; now?
o Ja(w:=a*Aa<5h)
x VYaw:=a? w can hardly assume all those values at once
X daa:=d; s just true as no visible effects or constraints
? dp>0—3a(a<b5Ad:=a>+1) what happensif d; <0

Example (Differential-algebraic / DA constraints)

o X1 di N\ X2 d

Example (Differential-algebraic / DA constraints)
o X{:d1/\X£:d2
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
od =—dAd =1

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dy A dj =1 incompatible slope

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dx A dj =1 incompatible slope
o (h>0—d =—dhAds=ch)A(dh <O0—d} =dy Ads = —d)

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dx A dj =1 incompatible slope
o (h>0—d =—dhAds=ch)A(dh <O0—d} =dy Ads = —d)
e —(d; =5)

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dy A dj =1 incompatible slope
0o (h>0—d =—-dbAdi=d)A(h <0—dl = Ady=—dh)
x —(dj = 5) what is the slope of di now?

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dx A dj =1 incompatible slope
o (h>0—d =—dhAds=ch)A(dh <O0—d} =dy Ads = —d)
x —(dj = 5) what is the slope of di now?
0 Jw(d] = —wdh ANd =wdi A =1 <w < 1)

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dx A dj =1 incompatible slope
o (h>0—d =—dhAds=ch)A(dh <O0—d} =dy Ads = —d)
x —(dj = 5) what is the slope of di now?
0 Jw(d] = —wdh ANd =wdi A =1 <w < 1)
° Yw(d] = —wdh A d = wdh)

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dx A dj =1 incompatible slope
o (h>0—d =—dhAds=ch)A(dh <O0—d} =dy Ads = —d)
x —(dj = 5) what is the slope of di now?
0 Jw(d] = —wdh ANd =wdi A =1 <w < 1)
X Yw(d] = —wdr AN d) =wdi) w cannot have all those slopes at once

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dx A dj =1 incompatible slope
o (h>0—d =—dhAds=ch)A(dh <O0—d} =dy Ads = —d)
x —(dj = 5) what is the slope of di now?
0 Jw(d] = —wdh ANd =wdi A =1 <w < 1)
X Yw(d] = —wdr AN d) =wdi) w cannot have all those slopes at once

e Jaa =d;

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dx A dj =1 incompatible slope
o (h>0—d =—dhAds=ch)A(dh <O0—d} =dy Ads = —d)
x —(dj = 5) what is the slope of di now?
0 Jw(d] = —wdh ANd =wdi A =1 <w < 1)
X Yw(d] = —wdr AN d) =wdi) w cannot have all those slopes at once

x daa =d; s just true as no visible effects or constraints

Example (Differential-algebraic / DA constraints)

xp=di Axy=dbo

x1=diAxhb=dr Ndj = —wdr N dy = wdy

di = —wdh ANd) =wdi Ndy >0

di = —d> A di =1 incompatible slope

(h>0—d =—dyAdy=d)A(dy <0— d =do Ad) = —dy)
—(d; = 5) what is the slope of di now?

Jw(df = —wdbh Adj =wdi A =1 <w < 1)

Vw (d] = —wdyr A dy =wdi) w cannot have all those slopes at once
Jdaa = d; s just true as no visible effects or constraints

Jw(df = —wdb ANdj =wdi A =1 <w < 1)V (d] < dj <2dy)

e X X o X @ X o ©

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dx A dj =1 incompatible slope
o (h>0—d =—dhAds=ch)A(dh <O0—d} =dy Ads = —d)
x —(dj = 5) what is the slope of di now?
0 Jw(d] = —wdh ANd =wdi A =1 <w < 1)
X Yw(d] = —wdr AN d) =wdi) w cannot have all those slopes at once
x daa =d; s just true as no visible effects or constraints
0 Jw(d] = —wdh ANdi =wdi A =1 <w <1)V(d] < dj<2dy)
0di1 >0—-x{=diAx;=drANd] = —wd

Example (Differential-algebraic / DA constraints)
o xp=di Axy=db>
o x{=diAx)=dr Nd] = —wdh A\ dj = wd;
0 di = —wdh Ndj)=wdi Nd1 >0
X di = —dx A dj =1 incompatible slope
o (h>0—d =—dhAds=ch)A(dh <O0—d} =dy Ads = —d)
x —(dj = 5) what is the slope of di now?
0 Jw(d] = —wdh ANd =wdi A =1 <w < 1)
X Yw(d] = —wd> A dj =wdi) w cannot have all those slopes at once
x daa =d; s just true as no visible effects or constraints
0 Jw(d] = —wdh ANdi =wdi A =1 <w <1)V(d] < dj<2dy)
?7di>0—>x{ =di Axh,=drNd] = —wd>» what happens if d; <0

We only allow change x :=6 or x’ in affirmative subformulas:

Formula G is affirmative subformula of first-order formula F, iff:

© G is a positive subformula of F, i.e., occurs with an even number of
negations, and

@ no variable y that occurs in G is in the scope of a universal quantifier
Vy of a positive subformula of F (or Jy of negative subformula of F)

@ DJ constraint: FOLR formula J over X with additional atomic
formulas of the form x : =6 where x € ¥, § € Trm(X).

@ The latter are called assignments and are only allowed in affirmative
subformulas of DJ-constraints that are not in the scope of a quantifier
for x of J.

@ DJ-constraint without assignments is called jump-free.

@ Variable x is (possibly) changed in J iff an assignment of the
form x:= 60 occurs in J.

(x1:=01AN . Axp=0, Ax1 >0)V(x3: =01 A .. Axp:=0, Axg <0)

@ if x; > 0, then simultaneously changes x; to the respective 6;, and

(x1:=01AN . Axp=0, Ax1 >0)V(x3: =01 A .. Axp:=0, Axg <0)

@ if x; > 0, then simultaneously changes x; to the respective 6;, and

@ if x; < 0, changes the x; to ¥;, instead.

(3= AN Ax:=0,Ax1 >0)V (x1:=U1 A .. Axp: =0y Axp <0)

@ if x; > 0, then simultaneously changes x; to the respective 6;, and
@ if x; < 0, changes the x; to ¥;, instead.

e if x;y =0, then no disjunct applies as evaluates to false so that no
jump is possible at all, which will deadlock the system.

(3= AN Ax:=0,Ax1 >0)V (x1:=U1 A .. Axp: =0y Axp <0)

@ if x; > 0, then simultaneously changes x; to the respective 6;, and

@ if x; < 0, changes the x; to ¥;, instead.

e if x;y =0, then no disjunct applies as evaluates to false so that no
jump is possible at all, which will deadlock the system.

@ Overlapping cases as in (x:=x —1A x> 0)V x:=0 allow any
disjunct to take effect by a nondeterministic choice.

(3= AN Ax:=0,Ax1 >0)V (x1:=U1 A .. Axp: =0y Axp <0)

@ if x; > 0, then simultaneously changes x; to the respective 6;, and
@ if x; < 0, changes the x; to ¥;, instead.

e if x;y =0, then no disjunct applies as evaluates to false so that no
jump is possible at all, which will deadlock the system.

@ Overlapping cases as in (x:=x —1A x> 0)V x:=0 allow any
disjunct to take effect by a nondeterministic choice.

@ Quantifiers express unbounded discrete nondeterministic choices.

JurJus (e1 =u1 A e :=up AIA>03u>0 ()\dl = pu AN Adp = ,LLUQ))

@ DA-constraint: FOLg formula D over ¥ U Y/, in which symbols of ¥’
only occur in affirmative subformulas that are not in the scope of a
quantifier of D for that symbol.

o Y/ is the set of all differential symbols x(") with n € N for state
variables x € ¥. Write x’ for x(1) .

@ DA-constraint without differential symbols is called non-differential.
e Variable x is (possibly) changed in D iff x(") occurs in D for an n > 1.

@ ord, D is the highest order n € N of a differential symbol x(")
occurring in D, otherwise not defined.

(X =0Ax>0)V (¥ =—x*Ax<0)

@ ongoing continuous evolution respecting differential and
non-differential constraints during the whole evolution;

(X =0Ax>0)V (¥ =—x*Ax<0)

@ ongoing continuous evolution respecting differential and
non-differential constraints during the whole evolution;

@ evolves along x’ = # while x > 0, evolves along x’ = —x? when x < 0

(X =0Ax>0)V (¥ =—x*Ax<0)
@ ongoing continuous evolution respecting differential and
non-differential constraints during the whole evolution;
@ evolves along x’ = # while x > 0, evolves along x’ = —x? when x < 0
@ never allowed to enter the region where neither case applies (x = 0).

(X =0Ax>0)V (¥ =—x*Ax<0)
@ ongoing continuous evolution respecting differential and
non-differential constraints during the whole evolution;
@ evolves along x’ = # while x > 0, evolves along x’ = —x? when x < 0
@ never allowed to enter the region where neither case applies (x = 0).

@ Overlapping cases allow any disjunct to take effect by a
nondeterministic choice:

Jw(d) = —wdh Ady =wdy A—1<w < 1)V (d] = d} = 0)

(X =0Ax>0)V (¥ =—x*Ax<0)
@ ongoing continuous evolution respecting differential and
non-differential constraints during the whole evolution;
@ evolves along x’ = # while x > 0, evolves along x’ = —x? when x < 0
@ never allowed to enter the region where neither case applies (x = 0).

@ Overlapping cases allow any disjunct to take effect by a
nondeterministic choice:

Jw(d] = —~wdb Ady =wdi A =1 <w < 1)V (d] =dy=0)
@ Quantifiers express continuous nondeterministic choices:
Ju(dj = —(w+u)da Ady = (w+ u)dy A —0.1 < u<0.1)

expresses that the system follows a continuous evolution in which, at
each time, the differential equations are respected for some choice
of uin —0.1 < u < 0.1, possibly different at each point in time.

~ AndréPlatzer (CMU) 15-819/11: Differential-algebraic Dynamic Logic | 12/31

Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.

Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.

@ d>0—Ja(a<bAdi=a’+1)

Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.

x dp>0—3a(a<5Adi:=a>+1) what happensifd; <0

Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.

x dp>0—3a(a<5Adi:=a>+1) what happensifd; <0
° (d1>0/\d1::a2+1)\/d2§O

Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.

x dp>0—3a(a<5Adi:=a>+1) what happensifd; <0
(d1>0/\d1'232+)Vd <0
e d; >0—>X1 dy /\X2 d2/\d1 —wdh

Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.

x dp>0—3a(a<5Adi:=a>+1) what happensifd; <0
(d1>0/\d1'232+)Vd <0
X di>0—x{=di Ax)=d)ANd{ =—wd>r what happens if d; <0

Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.

x dp>0—3a(a<5Adi:=a>+1) what happensifd; <0
(d1>0/\d1'232+)Vd <0

X di>0—x{=di Ax)=d)ANd{ =—wd>r what happens if d; <0
o (dy>0AX, =di Axb=dy Al = —wdh)V (dh <OAX =1)

Free nondeterministic change of y is expressible:
@ day:=a, or

e dJay'=a

Expect changes of all changed variables are specified explicitly in all cases
of the constraints to improve readability: A DA-constraint or
DJ-constraint C is homogeneous iff, in each disjunct of a disjunctive
normal form of C, every changed variable of C is changed exactly once.

x dp>0—3a(a<5Adi:=a>+1) what happensifd; <0
(d1>0/\d1'232+)Vd <0

X di>0—x{=di Ax)=d)ANd{ =—wd>r what happens if d; <0

X (i >0Ax{=di Axy=do Nd] = —wdh) V (di <OAx =1)

D
J
a; 3
aupg

*

(0

(continuous DA-constraint)
(discrete DJ-constraint)
(seq. composition)
(nondet. choice)

(nondet. repetition)

} Kleene algebra

D (continuous DA-constraint)

J (discrete DJ-constraint)

a; 3 (seq. composition)

aup (nondet. choice) } Kleene algebra
a* (nondet. repetition)

TRM = (ctrl; fly)*
ctrl =(?||x — y|| > 5; Jaw:=a)
UQx =yl <5 d:=w(x—c)t)
fly =x'=d Nd] = —wds A d] = wd;

AN

D (continuous DA-constraint)

J (discrete DJ-constraint)

a; 3 (seq. composition)

aup (nondet. choice) } Kleene algebra
a* (nondet. repetition)

TRM = (ctrl; fly)*
ctrl =(?||x — y|| > 5; Jaw:=a)
UQx =yl <5 d:=w(x—c)t)
fly =x'=d Nd] = —wds A d] = wd;
Ny =€ Nel = —wer N e] = wey
A ...

D (continuous DA-constraint)

J (discrete DJ-constraint)

a; 3 (seq. composition)

aup (nondet. choice) } Kleene algebra
a* (nondet. repetition)

TRM = (ctrl; fly)*
ctrl =(?||x — y|| > 5; Jaw:=a)
UQx =yl <5 d:=w(x—c)t)
fly =x'=d Nd] = —wds A d] = wd;
Ny =€ Nel = —wer N e] = wey
A ...

conjunctive DA-constraints
DA-constraints

no DA-constraints

no DA-constraints, over N
general DA-programs

continuous dynamical systems
switched continuous dynamical systems
discrete dynamical systems

discrete while programs

hybrid dynamical systems

+ first-order dynamics

v gr= v = w when not changed

@ In which state can we interpret dj = —wd> A dj = wdi?

@ In which state can we interpret dj = —wd> A dj = wdi?

@ Not in a single state, because derivatives not defined

@ In which state can we interpret dj = —wd> A dj = wdi?
@ Not in a single state, because derivatives not defined

@ Along flow, di makes sense and DA-constraint can be interpreted
locally.

@ In which state can we interpret dj = —wd> A dj = wdi?
@ Not in a single state, because derivatives not defined

@ Along flow, di makes sense and DA-constraint can be interpreted
locally.

¢ componentwise continuous on [0, r]: ¢(¢)(x) continuous in ¢ for x € X,
Differentially augmented state ¢(() of ¢ at ¢ € [0, r] agrees with ©(()
except that it assigns values to some x(") ¢ ¥':

M(C) if n-times continuously differentiable in t at ¢

() () = { o

undefined otherwise

@ is state flow of the order of D, iff value of each differential symbol
occurring in DA-constraint D is defined on [0, r]

Let o state flow of the order of DA-constraint D and duration r > 0.
¢ = D iff, for all ¢ € [0, r],

@ (¢) Er D using standard semantics =g of first-order real
arithmetic, and

(2] |[Z]|¢(C) = |[z]|¢(0) for all variables z that are not changed by D.

Let o state flow of the order of DA-constraint D and duration r > 0.
¢ = D iff, for all ¢ € [0, r],

@ (¢) Er D using standard semantics =g of first-order real
arithmetic, and

(2] |[Z]|¢(C) = |[z]|¢(0) for all variables z that are not changed by D.

@ Only variables whose differential symbols occur in D need
continuously differentiable values.

Let o state flow of the order of DA-constraint D and duration r > 0.
¢ = D iff, for all ¢ € [0, r],

@ (¢) Er D using standard semantics =g of first-order real
arithmetic, and

@ [z];() = [z]5() for all variables z that are not changed by D.

@ Only variables whose differential symbols occur in D need
continuously differentiable values.

@ Quantified variables can change arbitrarily, even discontinuously

Let o state flow of the order of DA-constraint D and duration r > 0.
¢ = D iff, for all ¢ € [0, r],

@ (¢) Er D using standard semantics =g of first-order real
arithmetic, and

@ [z];() = [z]5() for all variables z that are not changed by D.

@ Only variables whose differential symbols occur in D need
continuously differentiable values.

@ Quantified variables can change arbitrarily, even discontinuously

@ In Jux’ = u?, the value of u? (not u) varies continuously, because x’
does.

Let o state flow of the order of DA-constraint D and duration r > 0.
¢ = D iff, for all ¢ € [0, r],

@ (¢) Er D using standard semantics =g of first-order real
arithmetic, and

@ [z];() = [z]5() for all variables z that are not changed by D.

@ Only variables whose differential symbols occur in D need
continuously differentiable values.

@ Quantified variables can change arbitrarily, even discontinuously

@ In Jux’ = u?, the value of u? (not u) varies continuously, because x’
does.

@ For r =0, atomic formulas with differential symbols take no effect
(true as positive).

(v,w) = x:=0 =

(V, W) E 61> 6, <

(v,w) = ¢A Y <=

(v,w) | = =

(v,w) |=de) =

(v,w) E Ixo =
where [z],

1., =41,
61], > [6-],
o)

and (v,w) = ¢
¢ does not hold

i, W) [= ¢ for all vy that agree with v
except for the value of x
(vx, w) = ¢ for some v, that agrees with v
except for the value of x

|[
[
(v,w) =
E w) =

= [z], for all variables z that are not changed in J.

p(D) = {(¢(0),¢(r)) : ¢ = D of order of D, duration r > 0}
p(T) = {(v,w) : (v,w) E T}
p(aUB) = p(a)Up(B)
p(a; B) = p(a)o p(B)

p(a*):{(v,w) thereis _ Pe) @) p(a)w}

V— V] — V2 e

© Air Traffic Control

e o e e

vsind

X1

K v cos v)

d>
vsind)
= vcost
d, =
K

X1

d) =

vcostd = dq

vsintd = do

UCcosg = e

using = e

x; =vcost) =d; y; =ucosg=e;

Xo =vsind =dy Yy, =using=ep

di = (vcosd)
dy = (vsind)’

1 at
x; =vcost) =d; y; =ucosg=e;

Xo =vsind =dy Yy, =using=ep

diy = (vcosd) = v/ cos ¥ + v(—sin)
dy = (vsind)’ = v'sind + v(cos)’

1 at
X} =vcost) =d; y; =ucoss=e

Xy =vsind =d, y,=using=e
dy = e] =
dy = &) =

di = (vcosd) = v/ cos¥ + v(—sin) = —(vsind)w
dy = (vsind) = V'sind + v(cos9)y = (vcosid)w

e

S
Y2
4
Seal
]
d

1 Y1
X} =vcost) =d; y; =ucoss=e

xé=vsin19:d2 yé:using=e2
d{ == ei =
dé == eé =

di = (vecosd) = v cost + v(—sin¥) = —(vsind)w = —wd,
dy = (vsind) = V'sind + v(cos)Y = (veos?)w = wd;

1 Y1
X} =vcost) =d; y; =ucoss=e

Xy =vsind =d, y,=using=e
di = —wd> e] = — o0&

di = (vecosd) = v cost + v(—sin¥) = —(vsind)w = —wd,
dy = (vsind) = V'sind + v(cos)Y = (veos?)w = wd;

e

S
Y2
4
Seal
]
d

1 Y1
X} =vcost) =d; y; =ucoss=e

Xy =vsind =d, y,=using=e
di = —wd> e] = — o0&

di = (vecosd) = v cost + v(—sin¥) = —(vsind)w = —wd,
dy = (vsind) = V'sind + v(cos)Y = (veos?)w = wd;

v=|d| =4/d? + d?

n=e
X = da =€
d{ = —wdp e{ — 0€2
dé = wdl eé oel

di = (vecosd) = v/ cost? + v(—sin?)¥ = —(vsind)w = —wd,
dy = (vsind) = V'sind + v(cos)Y = (veos?)w = wd;

v=|d| =4/d? + d?

1 Y1

= —vit+vacost + wxp

wsintd — wxy

w—w

no more counterexamples but how to verify?

T Y1

= —vi+wve cos + wxo

Vo sin 1 — wxy

w—w

Y1

X] = —vit+vacost + wxp
xé = Vo sin 1 — wxy
W= w—w

Example (“Solving” differential equations)

1 . . .
— (Xlww €os tw — Vow €os tw sin 1 + vow €os tw cos tw sin ¥ — vy sin tw
ww

+ XoWwT SN tw — Vaw €os 1 €os two sin tw — vowV 1 — sin ¥ sin tw
+ vow cos ¥ cos tw sin tww + vow sin ¥ sin tw sin tw) ...

Xl(t) =

Y1

X] = —vit+vacost + wxp
xé = Vo sin 1 — wxy
W= w—w

Example (“Solving” differential equations)

V>0 — (xlww €os tw — Vow €os tw sin ¥ + vow cos tw cos tw sin 1 — vy sin tw
ww

+ XoWww SN tw — Vow €os 1 cos two sin tw — vawV 1 — sin ¥ sin tw
+ vow cos ¥ cos tw sin two + vow sin ¥ sin tw sin tw) ...

¢ = llx—ylI>>p* = (1 = y1)* + (2 = y2)* 2 p?
trm = free; entry, F(w)AG(w)
free = JwF(w) A JwG(w) A ¢

entry = will be derived later

There is an effective mapping ¢ such that the following diagram commutes:

HA —— DAP(X)
~ O

2 2
Q. States

ifferential-algebraic Dynamic Logic
Diff jal-algebraic D ic Logic DAL
@ Syntax
@ Semantics

DAL = FOLRr + DL l

[=]]l = 1

DAL = FOLRr + DL 4+ DAP l

ld]l > 1

[< —wdy Adb < wdr Vd] < 4]||d]| > 1

DAL = FOLRr + DL 4+ DAP l

[d1 = —db; di < —wdy A dé <wd; V d{ < 4] Hd” >1

DAL = FOLRr + DL 4+ DAP l

Id]l > 1
O |ld| > 1

[dliz—dg; d{g—wdg/\dégwdlvd{§4]||d|| >1 ;
Olld =1

-~

differential-algebraic program
= first-order completion of

hybrid programs

Countable set of predicate or function symbols along with natural numbers
as arities containing 0,1,+, -, /,=, <, >, >, < for reals

Countable set of predicate or function symbols along with natural numbers
as arities containing 0,1,+, -, /,=, <, >, >, < for reals

X for variable x € V
f(ty,...,tn) for function f/n € X of arity n > 0

Countable set of predicate or function symbols along with natural numbers
as arities containing 0,1,+, -, /,=, <, >, >, < for reals

¢ =
[a]o “all « reachables”
() “some « reachable”
p(ti, ..., tn) for predicate p/n € X of arity n > 0
- “not”
(o AY) “and”
(V) “or”
(6 —) “implies”

Qa-span

Qa-span

Qa-span

Qa-span

compositional semantics!

viEh >0 = [0], > [0],

vEoAY <~— vE¢andv

v E ¢ <= v [= ¢ does not hold

v = [a]o <= wlk¢ forall wwith (v,w) € p(a)
vE (o) <= wl=¢ forsome w with (v,w) € p(a)

We assume all divisions p/q in any formula are constraint ¢ are taken to
mean ¢ A g # 0.

Example (Zeno)
o (=-1Ad<a d:=d/2)"

Example (Zeno)
o (=-1Ad<a d:=d/2)"
o (x>0—-Xx"=-DA(x<0—-x"=1)Ay' =1

Example (Zeno)
o (=-1Ad<a d:=d/2)"
o (x>0—-Xx"=-DA(x<0—-x"=1)Ay' =1

State flow ¢ for DA-constraint D is non-Zeno, if there only is a finite
number of points in time where some variable needs to obey another
differential constraint of D than before the respective point in time:

Let D1V ---V D, be a disjunctive normal form of D, then flow

¢ : [0, r] — States is non-Zeno iff there are an m € N

and 0=¢(y < (1 <-+-<(m=randindices i1,...,im € {1,...,n} such
that ¢ respects Dj, on the interval [(x—1,(k], i-e., ¢lic, ;¢ F Di, for
all ke {1,...,m}.

A. Platzer.
Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput., 2008.
To appear.

	Motivation
	

	Differential-algebraic Programs
	Design Motives
	Syntax
	Semantics

	Air Traffic Control
	Differential-algebraic Dynamic Logic
	Syntax
	Semantics

