15-819/18-879: Hybrid Systems Analysis & Theorem Proving

11: Differential-algebraic Dynamic Logic

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA

- Motivation
- 2 Differential-algebraic Programs
 - Design Motives
 - Syntax
 - Discrete Jump Constraints
 - Differential-algebraic Constraints
 - Differential-algebraic Programs
 - Semantics
 - Differential-algebraic Constraints
 - Discrete Jump Constraints
 - Differential-algebraic Programs
- Air Traffic Control
- 4 Differential-algebraic Dynamic Logic DAL
 - Syntax
 - Semantics

- Motivation
- 2 Differential-algebraic Programs
 - Design Motives
 - Syntax
 - Discrete Jump Constraints
 - Differential-algebraic Constraints
 - Differential-algebraic Programs
 - Semantics
 - Differential-algebraic Constraints
 - Discrete Jump Constraints
 - Differential-algebraic Programs
- Air Traffic Control
- 4 Differential-algebraic Dynamic Logic DAL
 - Syntax
 - Semantics

Hybrid Systems & Air Traffic Control

R Hybrid Systems & Air Traffic Control

Hybrid Systems & Air Traffic Control

Hybrid Systems

continuous evolution along differential equations + discrete change

R Verification of Hybrid Systems & Air Traffic Control

Hybrid Systems

continuous evolution along differential equations + discrete change

P Verification of Hybrid Systems & Air Traffic Control

Hybrid Systems

continuous evolution along differential equations + discrete change

P Verification of Hybrid Systems & Air Traffic Control

Example ("Solving" differential equations)

$$x_1(t) = \frac{1}{\omega \varpi} (x_1 \omega \varpi \cos t\omega - v_2 \omega \cos t\omega \sin \vartheta + v_2 \omega \cos t\omega \cos t\varpi \sin \vartheta - v_1 \varpi \sin t\omega + x_2 \omega \varpi \sin t\omega - v_2 \omega \cos \vartheta \cos t\varpi \sin t\omega - v_2 \omega \sqrt{1 - \sin \vartheta^2} \sin t\omega + v_2 \omega \cos \vartheta \cos t\omega \sin t\varpi + v_2 \omega \sin \vartheta \sin t\omega \sin t\varpi) \dots$$

P Verification of Hybrid Systems & Air Traffic Control

Example ("Solving" differential equations)

$$\forall t \geq 0 \qquad \frac{1}{\omega \varpi} \left(x_1 \omega \varpi \cos t \omega - v_2 \omega \cos t \omega \sin \vartheta + v_2 \omega \cos t \omega \cos t \varpi \sin \vartheta - v_1 \varpi \sin t \omega \right. \\ + x_2 \omega \varpi \sin t \omega - v_2 \omega \cos \vartheta \cos t \varpi \sin t \omega - v_2 \omega \sqrt{1 - \sin \vartheta^2} \sin t \omega \\ + v_2 \omega \cos \vartheta \cos t \omega \sin t \varpi + v_2 \omega \sin \vartheta \sin t \omega \sin t \varpi \right) \dots$$

∀ Verification of Hybrid Systems & Air Traffic Control

Symbolic Verification

- constant/nilpotent dynamics
- otherwise "no" solutions
- sound

Numerical Verification

- √ challenging dynamics
- approximation errors
- unsound, ... see [PC07]

\mathcal{R} Verification of Hybrid Systems & Air Traffic Control

How To Get What We Really Need?

- challenging dynamics, e.g., curved flight
- automatic verification
- sound

A Idea: Exploit Vector Field of Differential Equations

```
"Definition" (Differential Invariant)
```

"Property that remains true in the direction of the dynamics"

```
----
```


A Idea: Exploit Vector Field of Differential Equations

"Definition" (Differential Invariant)

"Property that remains true in the direction of the dynamics"

R Verification Approaches for Hybrid Systems

problem	technique	Op Par T CI Aut						
$TRM \models z < m$	TL-MC	√	×	√	×	√		
$\models (Ax(\mathit{TRM}) \to \mathit{z} < \mathit{m})$	TL-calculus	×	×	✓		×		
\models [TRM] $z < m$	DL-calculus	√	√	×	√	×		

R Verification Approaches for Hybrid Systems

problem	technique	Op Par T CI Aut							
$TRM \models z < m$	TL-MC	√	X	√	X	√			
$\models (Ax(\mathit{TRM}) \rightarrow \mathit{z} < \mathit{m})$	TL-calculus	×	×	√		×			
\models [TRM] $z < m$	DL-calculus	√	√	×	√	?			

differential-algebraic dynamic logic DAL = DL + DAP

- Motivation
- 2 Differential-algebraic Programs
 - Design Motives
 - Syntax
 - Discrete Jump Constraints
 - Differential-algebraic Constraints
 - Differential-algebraic Programs
 - Semantics
 - Differential-algebraic Constraints
 - Discrete Jump Constraints
 - Differential-algebraic Programs
- Air Traffic Control
- 4 Differential-algebraic Dynamic Logic DAL
 - Syntax
 - Semantics

- Motivation
- 2 Differential-algebraic Programs
 - Design Motives
 - Syntax
 - Discrete Jump Constraints
 - Differential-algebraic Constraints
 - Differential-algebraic Programs
 - Semantics
 - Differential-algebraic Constraints
 - Discrete Jump Constraints
 - Differential-algebraic Programs
- Air Traffic Control
- Differential-algebraic Dynamic Logic DAL
 - Syntax
 - Semantics

P DAL Motives: State Transitions in Dynamic Logic

differential-algebraic dynamic logic

 $DAL = FOL_{\mathbb{R}} + ML$

P DAL Motives: State Transitions in Dynamic Logic

differential-algebraic dynamic logic

$$\mathsf{DAL} = \mathsf{FOL}_\mathbb{R} + \mathsf{DL}$$

DAL Motives: Differential-algebraic Program Model

differential-algebraic dynamic logic

$$DAL = FOL_{\mathbb{R}} + DL + DAP$$

$$[d_1' \leq -\omega d_2 \wedge d_2' \leq \omega d_1 \vee d_1' \leq 4] \|d\| \geq 1$$

DAL Motives: Differential-algebraic Program Model

differential-algebraic dynamic logic

$$DAL = FOL_{\mathbb{R}} + DL + DAP$$

$$[d_1 := -d_2; \ d_1' \le -\omega d_2 \wedge d_2' \le \omega d_1 \vee d_1' \le 4] \|d\| \ge 1$$

DAL Motives: Differential-algebraic Program Model

differential-algebraic dynamic logic

$$DAL = FOL_{\mathbb{R}} + DL + DAP$$

$$[d_1 := -d_2; d_1' \le -\omega d_2 \wedge d_2' \le \omega d_1 \vee d_1' \le 4] \|d\| \ge 1$$

differential-algebraic program

= first-order completion of hybrid programs

• $d_1 := -d_2$

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$

- $d_1 := -d_2$
- ullet $d_1:=-d_2\wedge d_2:=d_1$ simultaneous effect, rotate left by $rac{\pi}{2}$

- $d_1 := -d_2$
- ullet $d_1:=-d_2\wedge d_2:=d_1$ simultaneous effect, rotate left by $rac{\pi}{2}$
- $d_1 := -d_2 \wedge d_1 := 0$

- $d_1 := -d_2$
- ullet $d_1:=-d_2\wedge d_2:=d_1$ simultaneous effect, rotate left by $rac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- $\times d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $\bullet \ \, (d_1>0 \to d_1:=-d_2 \wedge d_2:=d_1) \wedge (d_1 \leq 0 \to d_1:=d_2 \wedge d_2:=-d_1) \\$

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $(d_1 > 0 \rightarrow d_1 := -d_2 \land d_2 := d_1) \land (d_1 \leq 0 \rightarrow d_1 := d_2 \land d_2 := -d_1)$
- $\neg (d_1 := 5)$

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $\bullet \ \, (d_1>0\to d_1:=-d_2\wedge d_2:=d_1)\wedge (d_1\leq 0\to d_1:=d_2\wedge d_2:=-d_1)$
- $\times \neg (d_1 := 5)$ what is really assigned to d_1 now?

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $\bullet \ \, (d_1>0\to d_1:=-d_2\wedge d_2:=d_1)\wedge (d_1\leq 0\to d_1:=d_2\wedge d_2:=-d_1)$
- $\times \neg (d_1 := 5)$ what is really assigned to d_1 now?
- $\exists a (\omega := a^2 \land a < 5)$

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $\bullet \ \, (d_1>0\to d_1:=-d_2\wedge d_2:=d_1)\wedge (d_1\leq 0\to d_1:=d_2\wedge d_2:=-d_1)$
- $\times \neg (d_1 := 5)$ what is really assigned to d_1 now?
- $\bullet \ \exists a (\omega := a^2 \land a < 5)$
- $\forall a \omega := a^2$

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $(d_1 > 0 \rightarrow d_1 := -d_2 \land d_2 := d_1) \land (d_1 \leq 0 \rightarrow d_1 := d_2 \land d_2 := -d_1)$
- $\times \neg (d_1 := 5)$ what is really assigned to d_1 now?
- $\exists a (\omega := a^2 \land a < 5)$
- $\times \forall a \omega := a^2 \quad \omega$ can hardly assume all those values at once

A General Discrete Jumps/Change

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $(d_1 > 0 \rightarrow d_1 := -d_2 \land d_2 := d_1) \land (d_1 \leq 0 \rightarrow d_1 := d_2 \land d_2 := -d_1)$
- $\times \neg (d_1 := 5)$ what is really assigned to d_1 now?
- $\exists a (\omega := a^2 \land a < 5)$
- $\times \forall a \omega := a^2 \quad \omega$ can hardly assume all those values at once
- $\bullet \exists a a := d_1$

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $(d_1 > 0 \rightarrow d_1 := -d_2 \land d_2 := d_1) \land (d_1 \leq 0 \rightarrow d_1 := d_2 \land d_2 := -d_1)$
- $\times \neg (d_1 := 5)$ what is really assigned to d_1 now?
- $\exists a (\omega := a^2 \land a < 5)$
- $\times \forall a \omega := a^2 \quad \omega$ can hardly assume all those values at once
- $\times \exists a \ a := d_1$ is just *true* as no visible effects or constraints

A General Discrete Jumps/Change

Example (Discrete Jump / DJ constraints)

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $(d_1 > 0 \rightarrow d_1 := -d_2 \land d_2 := d_1) \land (d_1 \leq 0 \rightarrow d_1 := d_2 \land d_2 := -d_1)$
- $\times \neg (d_1 := 5)$ what is really assigned to d_1 now?
- $\exists a (\omega := a^2 \land a < 5)$
- $\times \forall a \omega := a^2 \quad \omega$ can hardly assume all those values at once
- $\times \exists a \ a := d_1$ is just *true* as no visible effects or constraints
- $d_1 > 0 \rightarrow \exists a (a < 5 \land d_1 := a^2 + 1)$

A General Discrete Jumps/Change

Example (Discrete Jump / DJ constraints)

- $d_1 := -d_2$
- $d_1 := -d_2 \wedge d_2 := d_1$ simultaneous effect, rotate left by $\frac{\pi}{2}$
- \times $d_1 := -d_2 \wedge d_1 := 0$ incompatible jump
- $(d_1 > 0 \rightarrow d_1 := -d_2 \land d_2 := d_1) \land (d_1 \leq 0 \rightarrow d_1 := d_2 \land d_2 := -d_1)$
- $\times \neg (d_1 := 5)$ what is really assigned to d_1 now?
- $\exists a (\omega := a^2 \land a < 5)$
- $\times \forall a \omega := a^2 \quad \omega$ can hardly assume all those values at once
- $\times \exists a \ a := d_1$ is just *true* as no visible effects or constraints
- ? $d_1 > 0 \to \exists a (a < 5 \land d_1 := a^2 + 1)$ what happens if $d_1 < 0$

•
$$x_1' = d_1 \wedge x_2' = d_2$$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $\bullet \ \ d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- $d_1' = -d_2 \wedge d_1' = 1$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $\bullet \ \ d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- imes $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $\bullet \ \ d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- \times $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $\bullet \ \, (d_1>0 \to d_1'=-d_2 \wedge d_2'=d_1) \wedge (d_1 \leq 0 \to d_1'=d_2 \wedge d_2'=-d_1)$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- \times $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $(d_1 > 0 \rightarrow d_1' = -d_2 \wedge d_2' = d_1) \wedge (d_1 \leq 0 \rightarrow d_1' = d_2 \wedge d_2' = -d_1)$
- $\neg (d_1' = 5)$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- imes $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $\bullet \ \, (d_1>0\to d_1'=-d_2\wedge d_2'=d_1)\wedge (d_1\leq 0\to d_1'=d_2\wedge d_2'=-d_1)$
- $\times \neg (d'_1 = 5)$ what is the slope of d_1 now?

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- \times $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $(d_1 > 0 \rightarrow d_1' = -d_2 \wedge d_2' = d_1) \wedge (d_1 \leq 0 \rightarrow d_1' = d_2 \wedge d_2' = -d_1)$
- $\times \neg (d_1' = 5)$ what is the slope of d_1 now?
- $\exists \omega (d'_1 = -\omega d_2 \wedge d'_2 = \omega d_1 \wedge -1 < \omega < 1)$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- \times $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $(d_1 > 0 \rightarrow d_1' = -d_2 \wedge d_2' = d_1) \wedge (d_1 \leq 0 \rightarrow d_1' = d_2 \wedge d_2' = -d_1)$
- $\times \neg (d_1' = 5)$ what is the slope of d_1 now?
- $\exists \omega (d'_1 = -\omega d_2 \wedge d'_2 = \omega d_1 \wedge -1 < \omega < 1)$
- $\forall \omega (d'_1 = -\omega d_2 \wedge d'_2 = \omega d_1)$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- \times $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $(d_1 > 0 \rightarrow d_1' = -d_2 \wedge d_2' = d_1) \wedge (d_1 \leq 0 \rightarrow d_1' = d_2 \wedge d_2' = -d_1)$
- $\times \neg (d_1' = 5)$ what is the slope of d_1 now?
- $\exists \omega (d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge -1 \leq \omega \leq 1)$
- $\times \ \forall \omega \, (d_1' = -\omega d_2 \wedge d_2' = \omega d_1) \quad \omega \text{ cannot have all those slopes at once}$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $\bullet \ \ d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- imes $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $\bullet \ \, (d_1>0\to d_1'=-d_2\wedge d_2'=d_1)\wedge (d_1\leq 0\to d_1'=d_2\wedge d_2'=-d_1)$
- $\times \neg (d_1' = 5)$ what is the slope of d_1 now?
- $\exists \omega \left(d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge -1 \leq \omega \leq 1 \right)$
- $imes \ orall \omega \left(d_1' = -\omega d_2 \wedge d_2' = \omega d_1
 ight) \ \omega$ cannot have all those slopes at once
- $\exists a \, a' = d_1$

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $\bullet \ \ d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- imes $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $\bullet \ \, (d_1>0\to d_1'=-d_2\wedge d_2'=d_1)\wedge (d_1\leq 0\to d_1'=d_2\wedge d_2'=-d_1)$
- $\times \neg (d_1' = 5)$ what is the slope of d_1 now?
- $\exists \omega \left(d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge -1 \leq \omega \leq 1 \right)$
- $imes \ orall \omega \left(d_1' = -\omega d_2 \wedge d_2' = \omega d_1
 ight) \ \omega$ cannot have all those slopes at once
- $\times \exists a \, a' = d_1$ is just *true* as no visible effects or constraints

A General Continuous Change

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- \times $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $(d_1 > 0 \rightarrow d_1' = -d_2 \wedge d_2' = d_1) \wedge (d_1 \leq 0 \rightarrow d_1' = d_2 \wedge d_2' = -d_1)$
- $\times \neg (d_1' = 5)$ what is the slope of d_1 now?
- $\exists \omega (d'_1 = -\omega d_2 \wedge d'_2 = \omega d_1 \wedge -1 < \omega < 1)$
- $\times \ \forall \omega \, (d_1' = -\omega d_2 \wedge d_2' = \omega d_1) \quad \omega$ cannot have all those slopes at once
- $\times \exists a \, a' = d_1$ is just true as no visible effects or constraints
- $\exists \omega (d'_1 = -\omega d_2 \wedge d'_2 = \omega d_1 \wedge -1 < \omega < 1) \vee (d'_1 < d'_2 < 2d_1)$

A General Continuous Change

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- \times $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $(d_1 > 0 \rightarrow d_1' = -d_2 \wedge d_2' = d_1) \wedge (d_1 \leq 0 \rightarrow d_1' = d_2 \wedge d_2' = -d_1)$
- $\times \neg (d_1' = 5)$ what is the slope of d_1 now?
- $\exists \omega (d'_1 = -\omega d_2 \wedge d'_2 = \omega d_1 \wedge -1 < \omega < 1)$
- $\times \ \forall \omega \, (d_1' = -\omega d_2 \wedge d_2' = \omega d_1) \quad \omega$ cannot have all those slopes at once
- $\times \exists a \, a' = d_1$ is just true as no visible effects or constraints
- $\exists \omega (d'_1 = -\omega d_2 \wedge d'_2 = \omega d_1 \wedge -1 \leq \omega \leq 1) \vee (d'_1 \leq d'_2 \leq 2d_1)$
- $d_1 > 0 \rightarrow x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2$

A General Continuous Change

- $x_1' = d_1 \wedge x_2' = d_2$
- $x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \wedge d_2' = \omega d_1$
- $d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge d_1 \geq 0$
- \times $d_1' = -d_2 \wedge d_1' = 1$ incompatible slope
- $(d_1 > 0 \rightarrow d_1' = -d_2 \wedge d_2' = d_1) \wedge (d_1 \leq 0 \rightarrow d_1' = d_2 \wedge d_2' = -d_1)$
- $\times \neg (d_1' = 5)$ what is the slope of d_1 now?
- $\exists \omega (d'_1 = -\omega d_2 \wedge d'_2 = \omega d_1 \wedge -1 < \omega < 1)$
- $\times \ \forall \omega \, (d_1' = -\omega d_2 \wedge d_2' = \omega d_1) \quad \omega$ cannot have all those slopes at once
- $\times \exists a \, a' = d_1$ is just true as no visible effects or constraints
- $\exists \omega (d'_1 = -\omega d_2 \wedge d'_2 = \omega d_1 \wedge -1 \leq \omega \leq 1) \vee (d'_1 \leq d'_2 \leq 2d_1)$
- ? $d_1 > 0 \to x_1' = d_1 \land x_2' = d_2 \land d_1' = -\omega d_2$ what happens if $d_1 < 0$

We only allow change $x := \theta$ or x' in affirmative subformulas:

Definition (Affirmative subformula)

Formula G is affirmative subformula of first-order formula F, iff:

- G is a positive subformula of F, i.e., occurs with an even number of negations, and
- ② no variable y that occurs in G is in the scope of a universal quantifier $\forall y$ of a positive subformula of F (or $\exists y$ of negative subformula of F)

Definition (DJ constraint)

- DJ constraint: $\mathsf{FOL}_\mathbb{R}$ formula $\mathcal J$ over Σ with additional atomic formulas of the form $x := \theta$ where $x \in \Sigma$, $\theta \in \mathsf{Trm}(\Sigma)$.
- The latter are called assignments and are only allowed in affirmative subformulas of DJ-constraints that are not in the scope of a quantifier for x of \mathcal{J} .
- DJ-constraint without assignments is called *jump-free*.
- Variable x is (possibly) changed in \mathcal{J} iff an assignment of the form $x := \theta$ occurs in \mathcal{J} .

Discrete Jump Constraints

$$(x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 > 0) \vee (x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 < 0)$$

• if $x_1 > 0$, then simultaneously changes x_i to the respective θ_i , and

$$(x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 > 0) \vee (x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 < 0)$$

- if $x_1 > 0$, then simultaneously changes x_i to the respective θ_i , and
- if $x_1 < 0$, changes the x_i to ϑ_i , instead.

Discrete Jump Constraints

$$(x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 > 0) \vee (x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 < 0)$$

- if $x_1 > 0$, then simultaneously changes x_i to the respective θ_i , and
- if $x_1 < 0$, changes the x_i to ϑ_i , instead.
- if $x_1 = 0$, then no disjunct applies as evaluates to *false* so that no jump is possible at all, which will deadlock the system.

P Discrete Jump Constraints

$$(x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 > 0) \vee (x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 < 0)$$

- if $x_1 > 0$, then simultaneously changes x_i to the respective θ_i , and
- if $x_1 < 0$, changes the x_i to ϑ_i , instead.
- if $x_1 = 0$, then no disjunct applies as evaluates to *false* so that no jump is possible at all, which will deadlock the system.
- Overlapping cases as in $(x := x 1 \land x \ge 0) \lor x := 0$ allow any disjunct to take effect by a nondeterministic choice.

Discrete Jump Constraints

$$(x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 > 0) \vee (x_1 := \theta_1 \wedge \ldots \wedge x_n := \theta_n \wedge x_1 < 0)$$

- if $x_1 > 0$, then simultaneously changes x_i to the respective θ_i , and
- if $x_1 < 0$, changes the x_i to ϑ_i , instead.
- if $x_1 = 0$, then no disjunct applies as evaluates to *false* so that no jump is possible at all, which will deadlock the system.
- Overlapping cases as in $(x := x 1 \land x \ge 0) \lor x := 0$ allow any disjunct to take effect by a nondeterministic choice.
- Quantifiers express unbounded discrete nondeterministic choices.

$$\exists u_1 \exists u_2 \ (e_1 := u_1 \land e_2 := u_2 \land \exists \lambda > 0 \ \exists \mu > 0 \ (\lambda d_1 = \mu u_1 \land \lambda d_2 = \mu u_2))$$

Definition (DA constraints)

- DA-constraint: $\mathsf{FOL}_\mathbb{R}$ formula \mathcal{D} over $\Sigma \cup \Sigma'$, in which symbols of Σ' only occur in affirmative subformulas that are not in the scope of a quantifier of \mathcal{D} for that symbol.
- Σ' is the set of all *differential symbols* $x^{(n)}$ with $n \in \mathbb{N}$ for state variables $x \in \Sigma$. Write x' for $x^{(1)}$...
- DA-constraint without differential symbols is called non-differential.
- Variable x is (possibly) changed in \mathcal{D} iff $x^{(n)}$ occurs in \mathcal{D} for an $n \geq 1$.
- ord_x \mathcal{D} is the highest order $n \in \mathbb{N}$ of a differential symbol $x^{(n)}$ occurring in \mathcal{D} , otherwise not defined.

$$(x'=\theta \wedge x>0) \vee (x'=-x^2 \wedge x<0)$$

 ongoing continuous evolution respecting differential and non-differential constraints during the whole evolution;

$$(x'=\theta \wedge x>0) \vee (x'=-x^2 \wedge x<0)$$

- ongoing continuous evolution respecting differential and non-differential constraints during the whole evolution;
- evolves along $x' = \theta$ while x > 0, evolves along $x' = -x^2$ when x < 0

$$(x'=\theta \wedge x>0) \vee (x'=-x^2 \wedge x<0)$$

ongoing continuous evolution respecting differential and

- non-differential constraints during the whole evolution;
- evolves along $x' = \theta$ while x > 0, evolves along $x' = -x^2$ when x < 0
- never allowed to enter the region where neither case applies (x = 0).

$$(x'=\theta \wedge x>0) \vee (x'=-x^2 \wedge x<0)$$

- non-differential constraints during the whole evolution;
- evolves along $x' = \theta$ while x > 0, evolves along $x' = -x^2$ when x < 0
- never allowed to enter the region where neither case applies (x = 0).
- Overlapping cases allow any disjunct to take effect by a nondeterministic choice:

ongoing continuous evolution respecting differential and

$$\exists \omega \left(d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge -1 \leq \omega \leq 1 \right) \vee \left(d_1' = d_2' = 0 \right)$$

$$(x'=\theta \wedge x>0) \vee (x'=-x^2 \wedge x<0)$$

- non-differential constraints during the whole evolution;
- evolves along $x' = \theta$ while x > 0, evolves along $x' = -x^2$ when x < 0
- never allowed to enter the region where neither case applies (x = 0).
- Overlapping cases allow any disjunct to take effect by a nondeterministic choice:

ongoing continuous evolution respecting differential and

$$\exists \omega \left(d_1' = -\omega d_2 \wedge d_2' = \omega d_1 \wedge -1 \leq \omega \leq 1 \right) \vee \left(d_1' = d_2' = 0 \right)$$

• Quantifiers express continuous nondeterministic choices:

$$\exists u (d_1' = -(\omega + u)d_2 \wedge d_2' = (\omega + u)d_1 \wedge -0.1 \leq u \leq 0.1)$$

expresses that the system follows a continuous evolution in which, at each time, the differential equations are respected for *some* choice of u in $-0.1 \le u \le 0.1$, possibly different at each point in time.

Free nondeterministic change of *y* is expressible:

- $\bullet \exists a \ y := a, \text{ or }$
- $\bullet \exists a y' = a$

Convention (Fully Homogeneous)

Expect changes of all changed variables are specified explicitly in all cases of the constraints to improve readability: A DA-constraint or DJ-constraint \mathcal{C} is homogeneous iff, in each disjunct of a disjunctive normal form of \mathcal{C} , every changed variable of \mathcal{C} is changed exactly once.

Free nondeterministic change of y is expressible:

- $\bullet \exists a \ y := a, \text{ or }$
- $\bullet \exists a y' = a$

Convention (Fully Homogeneous)

Expect changes of all changed variables are specified explicitly in all cases of the constraints to improve readability: A DA-constraint or DJ-constraint \mathcal{C} is homogeneous iff, in each disjunct of a disjunctive normal form of \mathcal{C} , every changed variable of \mathcal{C} is changed exactly once.

•
$$d_1 > 0 \rightarrow \exists a (a < 5 \land d_1 := a^2 + 1)$$

Free nondeterministic change of y is expressible:

- $\bullet \exists a \ y := a, \text{ or }$
- $\bullet \exists a y' = a$

Convention (Fully Homogeneous)

Expect changes of all changed variables are specified explicitly in all cases of the constraints to improve readability: A DA-constraint or DJ-constraint \mathcal{C} is homogeneous iff, in each disjunct of a disjunctive normal form of C, every changed variable of C is changed exactly once.

$$\times$$
 $d_1 > 0 \rightarrow \exists a (a < 5 \land d_1 := a^2 + 1)$ what happens if $d_1 \le 0$

Free nondeterministic change of y is expressible:

- $\bullet \exists a \ y := a, \text{ or }$
- $\bullet \exists a y' = a$

Convention (Fully Homogeneous)

Expect changes of all changed variables are specified explicitly in all cases of the constraints to improve readability: A DA-constraint or DJ-constraint \mathcal{C} is homogeneous iff, in each disjunct of a disjunctive normal form of C, every changed variable of C is changed exactly once.

$$\times$$
 $d_1>0
ightarrow \exists a\,(a<5 \land d_1:=a^2+1)$ what happens if $d_1\leq 0$

•
$$(d_1 > 0 \land d_1 := a^2 + 1) \lor d_2 \le 0$$

Free nondeterministic change of y is expressible:

- $\bullet \exists a \ y := a, \text{ or }$
- $\bullet \exists a v' = a$

Convention (Fully Homogeneous)

Expect changes of all changed variables are specified explicitly in all cases of the constraints to improve readability: A DA-constraint or DJ-constraint \mathcal{C} is homogeneous iff, in each disjunct of a disjunctive normal form of C, every changed variable of C is changed exactly once.

$$imes$$
 $d_1>0
ightarrow \exists a \left(a < 5 \wedge d_1 := a^2 + 1
ight)$ what happens if $d_1 \leq 0$

$$\times (d_1 > 0 \wedge d_1 := a^2 + 1) \vee d_2 \leq 0$$

•
$$d_1 > 0 \rightarrow x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2$$

A Simplify: Fully Homogeneous Constraints

Free nondeterministic change of y is expressible:

- $\bullet \exists a \ y := a, \text{ or }$
- $\bullet \exists a y' = a$

Convention (Fully Homogeneous)

Expect changes of all changed variables are specified explicitly in all cases of the constraints to improve readability: A DA-constraint or DJ-constraint \mathcal{C} is homogeneous iff, in each disjunct of a disjunctive normal form of C, every changed variable of C is changed exactly once.

$$imes d_1>0
ightarrow \exists a\,(a<5\wedge d_1:=a^2+1) \quad ext{ what happens if } d_1\leq 0 \ imes (d_1>0\wedge d_1:=a^2+1) \lor d_2\leq 0$$

$$imes$$
 $d_1>0
ightarrow x_1'=d_1 \wedge x_2'=d_2 \wedge d_1'=-\omega d_2$ what happens if $d_1\leq 0$

A Simplify: Fully Homogeneous Constraints

Free nondeterministic change of y is expressible:

- $\bullet \exists a \ y := a, \text{ or }$
- $\bullet \exists a v' = a$

Convention (Fully Homogeneous)

Expect changes of all changed variables are specified explicitly in all cases of the constraints to improve readability: A DA-constraint or DJ-constraint \mathcal{C} is homogeneous iff, in each disjunct of a disjunctive normal form of C, every changed variable of C is changed exactly once.

$$imes$$
 $d_1>0
ightarrow \exists a \left(a < 5 \wedge d_1 := a^2 + 1
ight)$ what happens if $d_1 \leq 0$

$$\times (d_1 > 0 \wedge d_1 := a^2 + 1) \vee d_2 \leq 0$$

$$imes$$
 $d_1>0
ightarrow x_1'=d_1 \wedge x_2'=d_2 \wedge d_1'=-\omega d_2$ what happens if $d_1\leq 0$

•
$$(d_1 > 0 \land x_1' = d_1 \land x_2' = d_2 \land d_1' = -\omega d_2) \lor (d_1 \le 0 \land x_1' = 1)$$

A Simplify: Fully Homogeneous Constraints

Free nondeterministic change of y is expressible:

- $\bullet \exists a \ y := a, \text{ or }$
- $\bullet \exists a v' = a$

Convention (Fully Homogeneous)

Expect changes of all changed variables are specified explicitly in all cases of the constraints to improve readability: A DA-constraint or DJ-constraint \mathcal{C} is homogeneous iff, in each disjunct of a disjunctive normal form of C, every changed variable of C is changed exactly once.

$$egin{aligned} & imes d_1 > 0
ightarrow \exists a \, (a < 5 \wedge d_1 := a^2 + 1) \quad \text{what happens if } d_1 \leq 0 \\ & imes \, (d_1 > 0 \wedge d_1 := a^2 + 1) \vee d_2 \leq 0 \\ & imes \, d_1 > 0
ightarrow x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2 \quad \text{what happens if } d_1 \leq 0 \\ & imes \, (d_1 > 0 \wedge x_1' = d_1 \wedge x_2' = d_2 \wedge d_1' = -\omega d_2) \vee (d_1 \leq 0 \wedge x_1' = 1) \end{aligned}$$

P Differential-algebraic Programs: Syntax

```
Definition (Differential-algebraic program \alpha)
 \mathcal{D}
                              (continuous DA-constraint)
                              (discrete DJ-constraint)
                              (seq. composition)
 \alpha; \beta
 \alpha \cup \beta
                              (nondet. choice)
                                                                      Kleene algebra
 \alpha^*
                              (nondet. repetition)
```


Differential-algebraic Programs: Syntax

Definition (Differential-algebraic program α)

TRM
$$\equiv$$
 $(ctrl; fly)^*$
 $ctrl \equiv (?||x - y|| \ge 5; \exists a \omega := a)$
 $\cup (?||x - y|| < 5; d := \omega(x - c)^{\perp})$
 $fly \equiv x' = d' \wedge d'_1 = -\omega d_2 \wedge d'_1 = \omega d_1$

Λ...

P Differential-algebraic Programs: Syntax

Definition (Differential-algebraic program α)

```
\mathcal{D}
                              (continuous DA-constraint)
                              (discrete DJ-constraint)
                              (seq. composition)
\alpha; \beta
                              (nondet. choice)
                                                                        Kleene algebra
\alpha \cup \beta
\alpha^*
                              (nondet. repetition)
```

TRM
$$\equiv$$
 $(ctrl; fly)^*$
 $ctrl \equiv (?||x - y|| \ge 5; \exists a \omega := a)$
 $\cup (?||x - y|| < 5; d := \omega(x - c)^{\perp})$
 $fly \equiv x' = d' \wedge d'_1 = -\omega d_2 \wedge d'_1 = \omega d_1$
 $\wedge y' = e' \wedge e'_1 = -\omega e_2 \wedge e'_1 = \omega e_1$
 $\wedge ...$

P Differential-algebraic Programs: Syntax

Definition (Differential-algebraic program α)

```
\mathcal{D}
                              (continuous DA-constraint)
                              (discrete DJ-constraint)
                              (seq. composition)
\alpha; \beta
                              (nondet. choice)
                                                                        Kleene algebra
\alpha \cup \beta
\alpha^*
                              (nondet. repetition)
```

TRM
$$\equiv$$
 $(ctrl; fly)^*$
 $ctrl \equiv (?||x - y|| \ge 5; \exists a \omega := a)$
 $\cup (?||x - y|| < 5; d := \omega(x - c)^{\perp})$
 $fly \equiv x' = d' \wedge d'_1 = -\omega d_2 \wedge d'_1 = \omega d_1$
 $\wedge y' = e' \wedge e'_1 = -\omega e_2 \wedge e'_1 = \omega e_1$
 $\wedge ...$

DA-program class	System class
conjunctive DA-constraints	continuous dynamical systems
DA-constraints	switched continuous dynamical systems
no DA-constraints	discrete dynamical systems
no DA-constraints, over $\mathbb N$	discrete while programs
general DA-programs	hybrid dynamical systems
	+ first-order dynamics

• In which state can we interpret $d_1' = -\omega d_2 \wedge d_2' = \omega d_1$?

P

Differential-algebraic Constraints: Semantics

- In which state can we interpret $d_1' = -\omega d_2 \wedge d_2' = \omega d_1$?
- Not in a single state, because derivatives not defined

P

Differential-algebraic Constraints: Semantics

- In which state can we interpret $d_1' = -\omega d_2 \wedge d_2' = \omega d_1$?
- Not in a single state, because derivatives not defined
- Along flow, d'_1 makes sense and DA-constraint can be interpreted locally.

- In which state can we interpret $d_1' = -\omega d_2 \wedge d_2' = \omega d_1$?
- Not in a single state, because derivatives not defined
- Along flow, d'_1 makes sense and DA-constraint can be interpreted locally.

Definition (Differential state flow $\varphi : [0, r] \rightarrow \mathsf{States}$)

 φ componentwise continuous on [0, r]: $\varphi(\zeta)(x)$ continuous in ζ for $x \in \Sigma$. Differentially augmented state $\bar{\varphi}(\zeta)$ of φ at $\zeta \in [0, r]$ agrees with $\varphi(\zeta)$ except that it assigns values to some $x^{(n)} \in \Sigma'$:

$$\bar{\varphi}(\zeta)\big(x^{(n)}\big) = \begin{cases} \frac{\mathrm{d}^n \varphi(t)(x)}{\mathrm{d}t^n}\big(\zeta\big) & \text{if n-times continuously differentiable in t at ζ} \\ \text{undefined} & \text{otherwise} \end{cases}$$

 φ is state flow of the order of \mathcal{D} , iff value of each differential symbol occurring in DA-constraint \mathcal{D} is defined on [0, r]

Definition (Interpretation of differential-algebraic constraints)

- ① $\bar{\varphi}(\zeta)\models_{\mathbb{R}}\mathcal{D}$ using standard semantics $\models_{\mathbb{R}}$ of first-order real arithmetic, and

Definition (Interpretation of differential-algebraic constraints)

- $\bar{\varphi}(\zeta) \models_{\mathbb{R}} \mathcal{D}$ using standard semantics $\models_{\mathbb{R}}$ of first-order real arithmetic, and
- - ullet Only variables whose differential symbols occur in ${\mathcal D}$ need continuously differentiable values.

Definition (Interpretation of differential-algebraic constraints)

- $\bar{\varphi}(\zeta) \models_{\mathbb{R}} \mathcal{D}$ using standard semantics $\models_{\mathbb{R}}$ of first-order real arithmetic, and
- - ullet Only variables whose differential symbols occur in ${\mathcal D}$ need continuously differentiable values.
 - Quantified variables can change arbitrarily, even discontinuously

Definition (Interpretation of differential-algebraic constraints)

- $\bar{\varphi}(\zeta) \models_{\mathbb{R}} \mathcal{D}$ using standard semantics $\models_{\mathbb{R}}$ of first-order real arithmetic, and
- - ullet Only variables whose differential symbols occur in ${\mathcal D}$ need continuously differentiable values.
 - Quantified variables can change arbitrarily, even discontinuously
 - In $\exists u \, x' = u^2$, the value of u^2 (not u) varies continuously, because x' does.

Definition (Interpretation of differential-algebraic constraints)

- $\bar{\varphi}(\zeta) \models_{\mathbb{R}} \mathcal{D}$ using standard semantics $\models_{\mathbb{R}}$ of first-order real arithmetic, and
- - ullet Only variables whose differential symbols occur in ${\mathcal D}$ need continuously differentiable values.
 - Quantified variables can change arbitrarily, even discontinuously
 - In $\exists u \, x' = u^2$, the value of u^2 (not u) varies continuously, because x' does.
 - For r = 0, atomic formulas with differential symbols take no effect (*true* as positive).

Definition (Interpretation of discrete jump constraints)

P Differential-algebraic Programs: Formal Semantics

Definition (Differential-algebraic programs α)

$$\begin{array}{l} \rho(\mathcal{D}) = \{(\varphi(0), \varphi(r)) : \varphi \models \mathcal{D} \text{ of order of } \mathcal{D}, \text{ duration } r \geq 0\} \\ \rho(\mathcal{J}) = \{(v, w) : (v, w) \models \mathcal{J}\} \\ \rho(\alpha \cup \beta) = \rho(\alpha) \cup \rho(\beta) \\ \rho(\alpha; \beta) = \rho(\alpha) \circ \rho(\beta) \\ \\ \rho(\alpha^*) = \left\{(v, w) : \text{ there is } v \xrightarrow{\rho(\alpha)} v_1 \xrightarrow{\rho(\alpha)} v_2 \xrightarrow{} w \right\} \end{array}$$

- Motivation
- 2 Differential-algebraic Programs
 - Design Motives
 - Syntax
 - Discrete Jump Constraints
 - Differential-algebraic Constraints
 - Differential-algebraic Programs
 - Semantics
 - Differential-algebraic Constraints
 - Discrete Jump Constraints
 - Differential-algebraic Programs
- 3 Air Traffic Control
- 4 Differential-algebraic Dynamic Logic DAL
 - Svntax
 - Semantics

Air Traffic Control

Air Traffic Control

Air Traffic Control

Air Traffic Control

$$d_1' = d_2' =$$

$$d'_1 = (v \cos \vartheta)'$$

$$d'_2 = (v \sin \vartheta)'$$

$$d'_1 = (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta'$$

$$d'_2 = (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta'$$

$$d_1' = (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega$$

$$d_2' = (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega$$

$$d'_1 = (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega = -\omega d_2$$

$$d'_2 = (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega = \omega d_1$$

$$d'_1 = (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega = -\omega d_2$$

$$d'_2 = (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega = \omega d_1$$

\mathcal{R} Differential Axiomatization of Flight Dynamics

$$d_1' = (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega = -\omega d_2$$

$$d_2' = (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega = \omega d_1$$

$$v = ||d|| = \sqrt{d_1^2 + d_2^2}$$

$$d_1' = (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega = -\omega d_2$$

$$d_2' = (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega = \omega d_1$$

$$v = ||d|| = \sqrt{d_1^2 + d_2^2}$$

Falsification versus Verification

no more counterexamples but how to verify?

Example ("Solving" differential equations)

$$\begin{aligned} x_1(t) &= \frac{1}{\omega\varpi} \big(x_1\omega\varpi\cos t\omega - v_2\omega\cos t\omega\sin\vartheta + v_2\omega\cos t\omega\cos t\varpi\sin\vartheta - v_1\varpi\sin t\omega \\ &+ x_2\omega\varpi\sin t\omega - v_2\omega\cos\vartheta\cos t\varpi\sin t\omega - v_2\omega\sqrt{1-\sin\vartheta^2}\sin t\omega \\ &+ v_2\omega\cos\vartheta\cos t\omega\sin t\varpi + v_2\omega\sin\vartheta\sin t\omega\sin t\omega \big) \dots \end{aligned}$$

Example ("Solving" differential equations)

$$\forall t \geq 0 \qquad \frac{1}{\omega \varpi} \left(x_1 \omega \varpi \cos t \omega - v_2 \omega \cos t \omega \sin \vartheta + v_2 \omega \cos t \omega \cos t \varpi \sin \vartheta - v_1 \varpi \sin t \omega \right. \\ + x_2 \omega \varpi \sin t \omega - v_2 \omega \cos \vartheta \cos t \varpi \sin t \omega - v_2 \omega \sqrt{1 - \sin \vartheta^2} \sin t \omega \\ + v_2 \omega \cos \vartheta \cos t \omega \sin t \varpi + v_2 \omega \sin \vartheta \sin t \omega \sin t \varpi \right) \dots$$

$$\phi \equiv \|x - y\|^2 \ge p^2 \equiv (x_1 - y_1)^2 + (x_2 - y_2)^2 \ge p^2$$

$$trm \equiv free; entry; \mathcal{F}(\omega) \wedge \mathcal{G}(\omega)$$

$$free \equiv \exists \omega \mathcal{F}(\omega) \wedge \exists \varpi \mathcal{G}(\varpi) \wedge \phi$$

$$entry \equiv \text{ will be derived later}$$

R Hybrid Automata Embedding Theorem

Proposition (Hybrid automata embedding)

There is an effective mapping ι such that the following diagram commutes:

- Motivation
- 2 Differential-algebraic Programs
 - Design Motives
 - Syntax
 - Discrete Jump Constraints
 - Differential-algebraic Constraints
 - Differential-algebraic Programs
 - Semantics
 - Differential-algebraic Constraints
 - Discrete Jump Constraints
 - Differential-algebraic Programs
- Air Traffic Control
- 4 Differential-algebraic Dynamic Logic DAL
 - Syntax
 - Semantics

P DAL Motives: State Transitions in Dynamic Logic

differential-algebraic dynamic logic

$$\mathsf{DAL} = \mathsf{FOL}_{\mathbb{R}} + \mathsf{DL}$$

DAL Motives: Differential-algebraic Program Model

differential-algebraic dynamic logic

$$DAL = FOL_{\mathbb{R}} + DL + DAP$$

$$[d_1' \le -\omega d_2 \wedge d_2' \le \omega d_1 \vee d_1' \le 4] \|d\| \ge 1$$

DAL Motives: Differential-algebraic Program Model

differential-algebraic dynamic logic

$$DAL = FOL_{\mathbb{R}} + DL + DAP$$

$$[d_1 := -d_2; \ d_1' \le -\omega d_2 \wedge d_2' \le \omega d_1 \vee d_1' \le 4] \|d\| \ge 1$$

DAL Motives: Differential-algebraic Program Model

differential-algebraic dynamic logic

$$DAL = FOL_{\mathbb{R}} + DL + DAP$$

$$\left[\left\langle d_1 := -d_2; \ d_1' \leq -\omega d_2 \wedge d_2' \leq \omega d_1 \vee d_1' \leq 4 \right] \|d\| \geq 1 \right]$$

differential-algebraic program

= first-order completion of hybrid programs

Definition (DAL Signature Σ)

Countable set of predicate or function symbols along with natural numbers as arities containing $0,1,+,\cdot,/,=,\leq,>,\geq,<$ for reals

P Differential-algebraic Dynamic Logic DAL: Syntax

Definition (DAL Signature Σ)

Countable set of predicate or function symbols along with natural numbers as arities containing $0, 1, +, \cdot, /, =, \leq, >, \geq, <$ for reals

Definition (DAL Term t)

$$x$$
 $f(t_1,\ldots,t_n)$

t ::=

for variable
$$x \in V$$

for function $f/n \in \Sigma$ of arity $n \ge 0$

P Differential-algebraic Dynamic Logic DAL: Syntax

Definition (DAL Signature Σ)

Countable set of predicate or function symbols along with natural numbers as arities containing $0, 1, +, \cdot, /, =, \leq, >, \geq, <$ for reals

Definition (DAL Formula ϕ, ψ)

```
\phi ::=
   [\alpha]\phi
                                                        "all \alpha reachables"
   \langle \alpha \rangle \phi
                                                        "some \alpha reachable"
   p(t_1,\ldots,t_n)
                                                       for predicate p/n \in \Sigma of arity n \ge 0
                                                        "not"
   \neg \phi
   (\phi \wedge \psi)
                                                        "and"
   (\phi \lor \psi)
                                                        "or"
   (\phi \rightarrow \psi)
                                                        "implies"
```


compositional semantics!

Definition (Formulas ϕ)

```
\begin{array}{lll} v \models \theta_1 \geq \theta_2 & :\iff & \llbracket \theta_1 \rrbracket_v \geq \llbracket \theta_2 \rrbracket_v \\ v \models \phi \wedge \psi & :\iff & v \models \phi \text{ and } v \models \psi \\ v \models \neg \phi & :\iff & v \models \phi \text{ does not hold} \\ v \models \llbracket \alpha \rrbracket \phi & :\iff & w \models \phi \text{ for all } w \text{ with } (v,w) \in \rho(\alpha) \\ v \models \langle \alpha \rangle \phi & :\iff & w \models \phi \text{ for some } w \text{ with } (v,w) \in \rho(\alpha) \end{array}
```


Assumption (Well-definedness)

We assume all divisions p/q in any formula are constraint ϕ are taken to mean $\phi \wedge q \neq 0$.

Example (Zeno)

•
$$(a' = -1 \land d \le a; d := d/2)^*$$

Example (Zeno)

- $(a' = -1 \land d \le a; d := d/2)^*$
- $(x \ge 0 \to x'' = -1) \land (x < 0 \to x'' = 1) \land y' = 1$

Example (Zeno)

- $(a' = -1 \land d \le a; d := d/2)^*$
- $(x \ge 0 \to x'' = -1) \land (x < 0 \to x'' = 1) \land y' = 1$

Assumption (Non-Zeno)

State flow φ for DA-constraint $\mathcal D$ is *non-Zeno*, if there only is a finite number of points in time where some variable needs to obey another differential constraint of $\mathcal D$ than before the respective point in time: Let $\mathcal D_1 \vee \dots \vee \mathcal D_n$ be a disjunctive normal form of $\mathcal D$, then flow $\varphi: [0,r] \to \mathsf{States}$ is non-Zeno iff there are an $m \in \mathbb N$ and $0 = \zeta_0 < \zeta_1 < \dots < \zeta_m = r$ and indices $i_1, \dots, i_m \in \{1, \dots, n\}$ such that φ respects $\mathcal D_{i_k}$ on the interval $[\zeta_{k-1}, \zeta_k]$, i.e., $\varphi|_{[\zeta_{k-1}, \zeta_k]} \models \mathcal D_{i_k}$ for all $k \in \{1, \dots, m\}$.

A. Platzer.

 $\label{lem:continuous} \mbox{Differential-algebraic dynamic logic for differential-algebraic programs}.$

J. Log. Comput., 2008.

To appear.