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dC calculus is sound, i.e.,
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Can we prove all valid formulas of d?



Both the discrete fragment and the continuous fragment of dC are not
effectively axiomatisable, i.e., they have no sound and complete effective
calculus, because natural numbers are definable in both fragments.




Both the discrete fragment and the continuous fragment of dC are not

effectively axiomatisable, i.e., they have no sound and complete effective
calculus, because natural numbers are definable in both fragments.

First-order logic with (non-linear) arithmetic of natural numbers has no
sound and complete effective calculus.
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dl calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations.
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dl calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations.
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Cook,Harel:  discrete-DL /data P.:  hybrid-dC/differential equations




FOD:FOL]R-I—[X{ZQ]_,...,X,/,:H"]F \

FOD ¢ =01 >0 | ~p | 1 A2 | Vx| Ixo | [x = 01,...,x, =0,]0




FOD = FOLg + [X{ = 01,. .. ,X,l, = 9,,]F

FOD ¢ =01 >0 | ~p | 1 A2 | Vx| Ixo | [x = 01,...,x, =0,]0

FOD ¢ =01 >0 | = | p1 Ao | Vx| Ixo | [X{ =61,...,x, = 0,]F
with FOLg-formula F



dC calculus is complete relative to first-order logic of differential equations.

E¢ iff Tautroph ¢

where FOD = FOLg + [x] = 01,...,x, = 0,]F




dC calculus is complete relative to first-order logic of differential equations.
E ¢ iff Tautropbt ¢

where FOD = FOLg + [x] = 01,...,x, = 0,]F

verification of hybrid systems = verification of dynamical systems! |
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