Centralized Automated Traffic Control

Yuyang Guo
yuyangg@andrew.cmu.edu
December 9, 2013

1. Background

Traffic congestion is one of the major limiting factors of the quality of metropolitan areas. It
severely impacts the quality of life, economic competitiveness, and largely contributes to excessive
pollution. Most current solutions involve limiting the quantity of automobiles on the street, which
do not benefit the city traffic in the long term. Therefore, an intelligent centralized traffic control
system that could largely increase the capacity of city roads and revolutionize the way people think
about trafficing is in demand.

2. Current Situation

We take the ring roads in Beijing as an example since it would be a nice demonstration of why the
new centrallized control system would significantly improve the traffic. The ring roads are basically
closed circle routes that are designed to serves as an express way to get around the city. However,
once the roads are at more than its half capacity, the speed of the cars slow down significantly.
(Maybe more research needed here). And the efficiency of road is inversely proportional to the
number of automobiles on the route. We propose that there exist a better control system to in-
crease the efficiency of city road usage when it approaches the capacity.

3. Method of Improvement

The most significant reason of congestion for ring roads at its full capacity is the lack of sychroniza-
tion. That is because of the spring effect when car’s velocity and acceleration propagates along the
circle when cars start to move. This is fundamentally constrained by the lack of information of the
entire system for each individual car. With a fully centrallized system that sychronizes movement
along the entire circle, in the ideal case, it is possible to move the automobiles arbitrarily high
speed even when it is at its full capacity.

4. Challenges in Synchronization

Naturally it is not possible to achieve full synchronization. When the centralized system sends
command to each individual automobile involved, each car would receive the signal between some
time period (t — d,t +), even if we pre-register the time of execution to avoid network latency by
sending commands that indicates actions into the future, there would still be execution time skews.
Therefore, we would like to prove that even when the cars are sychronized with some limited error
in timing, we are still able to maintain safety with some buffer distance between the cars.

5. Control Flow Setup

Consider a system consisting of a Centrallized Controller, and n cars (denoted as a set CARS =
{Car; where i € NN[1,n]}). The Centralized Controller holds information of where each car should

be at if there were no time delay, as well as where the cars are actually at, whereas individual cars
are of ignorant the environment. After the Centralized Controller ensures that some collection of
commands {Com; | i € N N[1,n]} does not violate system safety, it sends C'om;, which consists
of an acceleration command A; and a timing command 7; indicating how long the acceleration
should be executed, to Car; for all i’s. With some time delay between (0, maxdt), each car receives
the command and start executing the commands faithfully (meaning, accelerate with rate A; for
exactly T5).

We risk the professionalism of this paper to include the following picture:

(1)

6. Modeling

Instead of modeling the entire system with arbitrarily many cars using distributed hybrid system,
we introduce the idea of Reference Car and Buffered Region.

Definition The Reference Caris an imaginary car which has the position, velocity and acceleration
of a car that moves the same way as if there is no time delay. Reference Position, Reference
Velocity and Reference Accelaration refers to the respective attributes of the Reference Car.

Definition A Buffered Region is a region around a car’s Reference Position. Our safety requirement
dictates that each car does not leave its Buffered Region.

With that in mind, we can segment the road into disjoint Buffered Regions. As long as each car
stays in its buffered region, the system would ensure no collision. Therefore, a proof for one car
that would never leave its Buffered Region suffices to show that the entire system is safe, as long as
we make sure that the buffered regions don’t coincide. And for our purpose, since we command the
cars with same acceleration at the same time, we know that the relative distance between Reference
Positions are always the same, so they should never overlap in our system.

7. Proofs

We will prove safety for the following procedure that involves three phases:

Phase I: Acceleration

OrequiresI: the car starts at its reference position with velocity O.
Q@controll : accelerate the car to a random velocity below its maxv
@ensuresl : the car has some non-zero velocity below its maxv

and that its position is behind the reference

and the car’s postion error is within a fixed buffer

(proof to be found in final_acc.proof)

Phase II: Breaking

O@requiresII: the car has some non-zero velocity below its maxv
and that its position is behind the reference

and the car’s postion error is within a fixed buffer
Q@controllIl : break till the car comes to a stop

Q@ensuresII : the car has 0 velocity and its actual position with respect
to its reference position is within (-buffer, buffer)

(proof to be found in final_dec.proof)
Phase III: Adjustment

O@requiresIII: the car has 0 velocity and its actual position with respect
to its reference position is within (-buffer, buffer)
Q@controllIII: car drives from its actual postion to its reference postion

with some bounded amount of time
@ensuresIII: car is back to its reference postion with velocity O

(proof to be found in final_adj.proof)
We comment on the fact that

@ensuresl = QrequiresIl
@ensureslI = QrequiresIII

@ensureslIl = Qrequiresl

this means that this full control loop is repeatable.

Since we have the KeYmeara proofs for each individual phase ending in its ensures, we now hand link
them together. We also comment on the fact that, even though we did not use double box to prove

that for each phase the entire trace preserves @safety = (refX —buf fer) < x < (refX +buf fer),
it is actually implied. Because the car and the refCar position are furthest apart at their end
position as constrained by the fact that they accelerate/decelerate identically but just by some
time difference. Therefore we will assume that in our final hand-linked proof.

(We abbreviate requires as req, control as con, ensures as ens so that the proof might somehow
possibly maybe fit into the page. And the proof is attached to the end of file because it needs
horizontal formatting.)

8. Analysis and Applications

A general application of this system is to pack cars tightly on a road while keeping the speed very
fast. Some examples are ring roads mentioned in the first few sections of this paper, highway, traffic
control at busy traffic lights and city traffic in general.

We analyze the improvements from two perspectives: car distance and response time.

Distance
As adviced by California Driver Handbook!, drivers should follow the three second rule to
ensure safety. That is, if the car right in front is driving past a point at time 7', then the
following car should not pass not that point until 7"+ 3secs. To get some concrete data, if

the drivers are driving at
V = 60mph ~ 27m/s

then the safe following distance (D) would be
D =27m/s*3s = 8lm =~ 266 feet
Now consider the controller we proved, the required distance (RD) between two cars is
RD =2xbuf fer = 2 x maxv * maxdt

Where maxv is the stable velocity that our car is going at in the end. So here is a chart for
RD for different network latencies.

maxdt (secs) | RD (m) | RD (ft)
1 54 177
0.5 27 88.6
0.3 16.2 53.1
0.2 10.8 35.4
0.1 5.4 17.7

Response Time According to an online Reaction Time Study Statistics?, the human mean
reaction time from seeing a sign to action is around 200 miliseconds. Therefore, suppose
there are 50 cars in a row, and that it takes 200 miliseonds for the next car to move when it
sees the car in front of it moves, then even in the ideal case it would take the last car in row
at least 10 seconds to start moving. In comparison, the centralized system would take a few
hundred miliseconds to start.

"http://apps.dmv.ca.gov/pubs/d1600.pdf, page 47
*http://www.humanbenchmark.com/tests/reactiontime/stats.php

9. Limitations

Due to limited time and Computation Resource (yeah, macbook air), our controller is highly
simplified and has the following non-exhaustive list of limitations:

Adjustment Needed Our controller requires that, after accelerating and deceleration cycle, we
need an adjustment period where the centralized controller commands each car to drive to
its reference position. Even though the adjustment time is bounded by maxdt as proven in
final_adj.proof, it is still an annoying property that could be removed if we have a controller
that adjust the car to its reference position while driving.

Strict Accelerate Break Sequence Our controller dictates that, after accelerating for some pe-
riod of time, we cannot directly accelerate again. We must come to a break and go through
the adjustment phase until we can re-accelerate. It is also true that for our controller, we
cannot start acceleration halfway through breaking. It requires a more complicated proof
that we couldn’t get to with the limited amount of time.

Failure State Varification we weren’t able to prove the failure state is into a safe state. For the
controller described above, if one car suddenly breaks down and delerate to a stop during an
acceleration. The car should inform the centralized controller and command all the cars to
come to a stop. We did not varify that this would not cause too much damage.

10. Acknowledgements

Thanks to Professor André Platzer for so kindly offering this course so that I may be able to take
a stab at proving a system that I dreamt of ever since I was 10 years old. Thanks to his son who
kindly presented us with little bouncing balls with his angelic smile that inspired us to do great
thing in life. Huge thanks to head TA Sarah Loos who devoted to the course so much and graded all
the crappy controllers that we came up with initially and providing us infinite amount of support
when we are frustrated by formal verification. And thanks to Khalil Ghorbal and Stefan Mitsch
for the amazing simulations for the labs and Jan-David Quesel or whoever it was who was one of
those course staff that speaks Deutsch (like, everyone) :)

G A ryogen?

closed by final_acc.proof

Qreql - ([QconI]@ensI) A ([QconlI][|@safety)

closed by final_dec.proof closed by final_adj.proof
QreqlI + ([QconII]@ensII) A [QconlI][|@safety @reqlll t ([QconlI]@ensIII) A [QconlII][|@safety

(10, Ar, gen’
Qreqll \ [@Qconll; @conlII][]@safety

Q@reql + [(Qconl;@Qconll; @conlII)x|[]@safety

Qreql — [(Qconl;@conll; QconlIl)x*|[]@safety

