Neal Bhasin
15-424 Star-Lab
Project Report

Introduction

As part of my research with the Google Lunar X-Prize team at CMU, one of my goals is to
develop a planner and controller for an autonomous lunar lander. I have previously
developed a trajectory generator and
simulator, and others on the team
have developed Kalman filters for
motion tracking. Of specific
importance to our team is developing
the capability for the lunar lander to

use cameras and a laser to scan over a f ‘}\\
skylight, the entrance to a lunar cave, / \v

Scan Start

,
ol

Scan End

during landing. This entails flying and /
landing within close proximity to a /

lunar pit, something that has
previously been considered /
impossible due to the safety risks

Using hybrid systems, | worked to h‘ [M L

prove the ability of a lunar lander’s Figure 1. Example scan of a skylight during flyover
controller to achieve a safe landing

after skylight flyover. Using simplified models of the system, I proved (with varying
degrees of success) the safety of a set of control algorithms for controlling the motion of a
lunar lander over a skylight or crater.

Hybrid Systems and Logical Analysis

Hybrid systems are an especially appropriate and powerful tool for this kind of application.
A realistic system’s controller has both discrete and continuous elements that are often
difficult or inappropriate to completely separate. First order logic alone enables a simple
and very well understood method of determining and verifying properties of completely
discrete systems. Simulation enables a simple method of improving confidence in certain
claims about many systems, especially continuous ones. Unfortunately, even the most
advanced and computationally expensive simulations must skip testing some cases when
operating on multiple variables in the real numbers. This introduces uncertainty and edge
cases into even rigorously tested systems, which is simply unacceptable for space systems.

Hybrid systems uniquely enable a difficult but straightforward method of formally
verifying properties of the continuous and discrete elements of a system simultaneously. In
the case of an application like lunar lander control, this is extremely desirable due to the
extreme importance of verifying system safety properties to the highest degree possible.

Logical analysis performed upon hybrid systems can yield formal and easily reproducible
claims of safety properties over an entire domain of real number variables. One surprising
weakness of this analysis however, is the extreme computational complexity of numerical
analysis on many variables. Due to the doubly exponential runtime of methods for
quantifier elimination, hybrid systems with a non-trivial number of live variables quickly
become infeasible targets for analysis.

Simulation

Simulation provides a relatively easy method for more casual verification of system
properties. In the context of hybrid systems, I believe simulation represents an essential
development tool. It can quickly enable visual feedback coupled with a concrete example of
a system failure case. I often found that the only similar feedback provided by logical
analysis of hybrid systems was from specifically knowing when and where to check for a

counter-example to some
property. This also relied upon
the produced counterexample to
be readable and required
additional work to convert the
counterexample state into an
understandable program run.

In order to make debugging my
hybrid systems easier (and more
enjoyable), I developed a text-
based simulation utility in C
(Appendix A). This utility
allowed for the implementation
and visual simulation of different
control algorithms. Initial system
conditions were either hard-
coded or chosen randomly over a
limited domain within the

HUHRHRBHHBHRBHRBH R HREHBRHBHRBRHBHH RS HRH S HARBHASRA BB R HS RSB A RH R RS RS

Figure 2. Screenshot of text-based simulation utility

appropriate preconditions. For example, the location of the crater was randomly set at
runtime to be within some 20-unit window, always located to the right of the initial lander
position. Simple mistakes in the control algorithms that led to unsafe behavior were easily
caught using this tool, which took less than one second to compile and run.

A more advanced simulation utility would be a definite component of future work on this
project. Visual simulation, integration with logical analysis tools for generating
counterexamples, and Monte Carlo methods for randomized trials would all be valuable

next steps.

System Model

The lunar lander system is modeled in two dimensions with a set of world and lander
constraints, initial preconditions to ensure safety, a hybrid program containing a time-
driven controller and modeling world dynamics, and post-conditions that guarantee
system safety if proven.

The lander’s state begins in final planetary descent, flying at some positive altitude and
some initial horizontal position, with some downward and some rightward velocity. There
is some constant negative acceleration on the lander due to gravity. The planetary surface
is located at an altitude of zero, and on the surface there is one crater with some positive
radius, located to the right of the lander’s initial position. The lander’s time-driven control
has some positive time interval between control adjustments, which consist of setting the
horizontal and vertical acceleration resulting directly from rocket thrust. The vertical
acceleration the lander can produce is limited to be both positive and under some constant
system maximum. This maximum is constrained to be at least as much as necessary to
reach some negative velocity upon reaching the planetary surface after constant
acceleration. That negative surface velocity is the system’s safe impact velocity. Any lander
velocity at surface impact between this value and zero will ensure the lander momentum is
small enough to not damage the lander upon landing. The lander safety is represented by
post-conditions ensuring that upon impact with the surface, vertical velocity is within this
safe threshold and horizontal position is to the right of the crater.

The system is designed to allow any number of runs of the time driven controller and uses
an evolutionary domain constraint to ensure the system’s differential evolution is limited
between intervals of the controller. Additionally, the current system altitude is constrained
to be non-negative in the evolutionary domain. This allows the system to evolve into its
final state of zero altitude and ensures checking of the post-conditions at that point.
Evolution of the system past this point is unimportant, as the moment of impact alone
determines the system safety.

The controller for the system is designed to control vertical and horizontal acceleration
independently. Vertical acceleration is set to zero if the controller is able to calculate the
existence of a safe vertical descent option at the next time-step. It is otherwise set to a
braking value that ensures the lander reaches the surface exactly at the maximum impact
velocity after exerting constant acceleration in the presence of gravity during the
remaining descent. Horizontal acceleration is set to a breaking value that reduces velocity
to stop horizontal motion after flyover of the pit. If the lander has already surpassed the pit,
acceleration is applied to correct any leftward motion.

Safety and Efficiency

My submission included four different models, each progressively more complex and
representative of the full system. The first model (vertical_lander_a.key) represents a one-
run controller that chooses positive acceleration without any upper limit. The system
dynamics then undergo one continuous evolution and the safe landing velocity post-
condition is checked. This safety property was successfully proven
(vertical_lander_a.proof).

The second model (vertical_lander_b.key) represents a time-driven controller that follows
one acceleration control strategy at all times, and has an upper bound on acceleration. The
safety condition remains the same and is proven (vertical_lander_b.proof) with the
assistance of advanced loop invariants ensuring the controller always has a possible and
safe strategy.

The third model (vertical_lander_c.key) introduces the existence of the crater, but does not
contain the crater’s properties in the safety conditions. It also strengthens the controller by
allowing zero acceleration when possible. This potentially improves the efficiency of the
lander as it can make the same safe descent quicker by not resisting gravity for as much
time. Efficiency of the lander could be properly represented by calculating the fuel used by
the lander during descent. This would be a function of the acceleration and the mass of the
lander, which is itself a function of fuel use. As this metric is very complicated and not the
focus of this project, the controller was designed to allow efficiency but not formally
guarantee any metrics about the lander’s efficiency. This controller was partially proven
(vertical_lander_c.proof). There remains an open goal but no KeyMaera-generated
counterexample. I believe the controller satisfies its safety property, but without additional
computational effort (and perhaps more precise loop invariants) the safety property could
not be proven in a reasonable amount of computational time.

The final model (vertical_lander_full.key) reflects the full system model described
previously. An incomplete proof of this model’s safety is provided
(vertical_lander_full.proof). Proving the safety of this model would guarantee the vertical
landing momentum of the lander is within the safe limit and also that the lander is able to
safely traverse the skylight or crater before landing. Proving the safety of the third model is
a necessary precursor to proving the safety of the full model. The horizontal motion of the
lander could be evaluated for efficiency in a manner similar to that of the vertical motion.
This is not considered here for complexity reasons and is additionally likely to be far less
important than vertical efficiency due to the large effect of planetary gravity. A system
landing on a body with very weak gravity, like an asteroid, would need to treat horizontal
and vertical efficiency more equally.

Future Work

With more time and resources, | believe this system could be enhanced to provide
guarantees of both safety and efficiency for a more realistic and general model. First, the
models [have developed could be proven (possibly with some adjustments). After this, the
model could be augmented to track fuel usage in both dimensions. Efficiency post-
conditions and additional system preconditions could be introduced to reason about the
fuel usage of the lander. Using loop convergence or other similar techniques could help
enable stronger liveness guarantees of the system.

The system could next be extended using stochastic techniques to account for the random
noise introduced in both lander sensory readings and thrust. Additionally, the safety
properties could then be enriched to assign negative values of different levels to different
failure conditions. A realistic, noisy system cannot be proven completely safe, but using
these techniques we can provide transparent and logical risk assessments.

Lastly, I believe the system could be extended to cover all six degrees of freedom in the
lander’s motion. This could be possibly enabled with the assistance of language or analysis
tool support for vector and quaternion primitives. Another tool that I believe would be
valuable is a mechanism for automatically modularizing and proving sub-problems of a
complicated system. In my progressively more complicated models, this could have
enabled a quick mechanism to isolate and only prove the novel part of each system.
Although these systems may be true and are certainly decidable, their complexity severely
limits the ability for currently available computers to reason about their safety.

Appendix A - Simulation Utility Source Code

// simulate.c

// Neal Bhasin

// 15-424 Fall 2013

// Simulation to assist controller development for Lab 6

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <time.h>

const int HEIGHT
const int WIDTH
const int GRAV
const int FRAMES

30;

75;

-1; // pix / sec”™2
10; // frames / sec

void clearScreen() {
for(int i=0; i<HEIGHT; i++)
printf("\n");
return;

b

void drawWorld(int cx, int cr,
float px, float py,
float vx, float vy,
float ax, float ay) {
for(int i=HEIGHT; i>=0; i-—-) {
if(i == (int)py) {
for(int j=1; j<(int)px; j++)

printf(" ");

printf("[~[\n");
} else {

if(i == printf(" X-Pos: %f", px);
if(i == printf(" Y-Pos: %f", py);
i == printf(" X-Vel: %f", vx);
if "oy=-Vel: %f", vy);
if == printf(" X-Acc: %f", ax);

31)
i 30) (
i 29) (
i == 28) printf(
i 27) (
26) printf(" Y-Acc: %f", ay);
printf('"\n");
}
}
for(int i=@; i<=WIDTH; i++) {
if(i >= cx - cr & 1 < ¢cx + cr)
printf("_");
else

}
printf("\n\n\n");
return;

printf("#");

b

void enforceBounds(float *xpx, float *xpy) {
if(xpy < 0) *xpy = 0;
if(xpy > HEIGHT) xpy = HEIGHT;

0.

if(xpx < 0) *pX ;
WIDTH;

if(xpx > WIDTH) *px

b

float control_y(float vy, float py) {

float vfy = -2;

return (vy x vy — vfy x vfy) / (2 % py + 0.1) — GRAV;
¥

float control_x(int cx, int cr, float px, float py,
float vx, float vy) {
if(px < cx + cr) {
return (vx *x vx) / (2 * py + 0.1) — GRAV;
} else {
return -vx / FRAMES;
}

b

int main() {
srandom(time(NULL));

float px = 25;

float py = 45;

float vx = 2;

float vy = -5;

float ax = 0;

float ay = 0;

float fy = 0;

int cx = 30 + (random() % 20);
int cr = 5;

for(int i=0; i<1000; i++) {

fy = control_y(vy, py);
ax = control_x(cx, cr, px, py, VX, Vy);
ay = fy + GRAV;

// Evolve system
vX += ax / FRAMES;
vy += ay / FRAMES;
px += vx / FRAMES;
py += vy / FRAMES;
// Bound position and draw lander + world
enforceBounds (&px, &py);
drawWorld(cx, cr, px, py, VX, Vy, ax, ay);
usleep(1000000 / FRAMES);
if(py < 0.25) i = 999;

return 0;

Appendix B - Full System Model

/* Lab 6 | vertical_lander_full.key

* Neal Bhasin
*x nsbhasin
b3
* Simplified model of autonomous lunar lander system.
* Using a time-driven controller, the system aims to land
* on the surface within some acceptable velocity threshold
* within a mission time limit.
*/
\functions {
R H; /* Initial system altitude */
R X; /* Initial system x-position */
R g; /* World gravity */
R acc_1l; /x Limit on rocket acceleration */
R vel_f1l; /x Limit on impact velocity */
R cx; /* Crater center */
R cr; /* Crater radius */
R TC; /* Time driven controller interval time x/
}
\programVariables {
R x; /* Current x—-position */
R h; /* Current altitude */
R vx; /* Current x-velocity */
R vy; /* Current y-velocity */
R ax; /* Current x—acceleration */
R ay; /* Current y-acceleration */
R tc; /* Current controller time */
}
\problem {
(
/* System initialization and basic physical constraints */
H>0 &
x =X &
h =H &
cx > 0 &
cr >0 &
X <cx —cr &
vel_fl < 0 &
vy < vel_fl &
vX > 0 &
g<=~o &
TC > 0 &

/* Maximum thrust is enough to stop at surface x/
acc_l >= (vy™2 — vel_f172) / (2%H) - g &
/* Crater traversal is shorter than descent x/
cX — X +cr<h
)
->

\

* TC + 0.5 x g x TC™2) > 0 &
*x TC)™2 - vel_f172) /
y * TC + 0.5 % g *x TC"2)) - g <= acc_1l) then

ay := (vy™2 - vel_f172) / (2xh) - g
fi;
?2(0 <= ay & ay <= acc_1);
if(x < cx + cr) then

ax = (vx*2) / (2x(cx = x + cr))
else

if(vx < @) then ax := -vx / TC else ax := 0 fi
fi;
tc = 0;
{

h' = vy,

vy' =g + ay,

x' = vx,

vx' = ax,

tc' =1

& h >=10

& tc <= TC
}

)x@invariant(h >= 0 &
((h > 0) —> (vy < vel_fl &
acc_l >= (vy™2 - vel_f1*2) / (2xh) - g)) &
((h = 0) —> (vy >= vel_f1)))

\]

(

/* At landing, velocity must be within threshold
and lander must pass crater x/

(h =0) —> (vy >= vel_fl & vx >= cx + cr)

)

