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1 Introduction

This course has studied a number of logics, first-order logic FOL in Lecture 2, differ-
ential dynamic logic dC [P1a08, Plal0a, Plal2c, Plal2b] in Lecture 3 and Lecture 4 and
following, differential temporal dynamic logic dTL [Pla07, Plal0a, Chapter 4] in Lec-
ture 16 and 17, as well as differential game logic dG£L [Pla13] since Lecture 22. There are
other logics for cyber-physical systems that have not been included in this course, but
share similar principles for further dynamical aspects. Such logics include quantified
differential dynamic logic QdZ for distributed hybrid systems [Plal0b, Plal2a], which
are systems that are simultaneously distributed systems and hybrid systems, as well as
stochastic differential dynamic logic SAZ for stochastic hybrid systems [Plall], which
simultaneously involve stochastic dynamics and hybrid dynamics. Logics play a stellar
role not just in cyber-physical systems, but also many other contexts. Other important
logics include propositional logic, restrictions of first-order logic to certain theories,
such as first-order logic of real arithmetic [Tar51], and higher-order logic [And02]. But
there are numerous other important and successful logics.

In this lecture, we take a step back and study some common important concepts
in logic. This study will necessarily be hopelessly incomplete for lack of time. But it
should give you a flavor of important principles and concepts in logic that we have
not already run across explicitly in earlier lectures of this course. We will also have the
opportunity to apply these more general concepts to cyber-physical systems and learn
more about them in the next lecture.
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2 Soundness

The most important parts of a logic £ are the following. The logic £ defines what
the syntactically well-formed formulas are. Every well-formed formula carries meaning,
which the semantics of formulas in £ defines. The semantics defines a relation = between
sets of formulas and formulas, in which ® F ¢ holds iff ¢ is a semantic consequence
of the set of formulas ®, i.e. ¢ is true (usually written v |= ¢) in every interpretation v
for which all formulas 1) € ® are true. The most important case for our purposes is
the case ® = () of validity, in which case F ¢ holds iff ¢ is valid, i.e. true (v = ¢) in all
interpretations v of £. An interpretation v in which ¢ is true (i.e. v |= ¢) is also called a
model of ¢.

For the case of first-order logic FOL, Lecture 2 defined both their syntax and seman-
tics. The syntax and semantics of differential dynamic logic dC has been defined in
Lecture 3 and Lecture 4.

The syntax of a logic £ defines what we can write down that carries meaning. The
semantics of a logic £ then defines what the meaning of the syntactic formulas is. The
semantics, in particular, defines which formulas express true facts about the world,
either in a particular interpretation v or about the world in general (for valid formulas,
which are true regardless of the interpretation). Yet, the semantics is usually highly
ineffective, so that it cannot be used directly to find out whether a formula is valid. Just
think of formulas in differential dynamic logic that express safety properties of hybrid
systems. It would not get us very far if we were to try to establish the truth of such
a formula by literally computing the semantics (which includes executing the hybrid
system) in every initial state, of which there are uncountably infinitely many.

Instead, logics come with proof calculi that can be used to establish validity of logical
formulas in the logic £. Those proof calculi comprised axioms (Lecture 5) and proof rules
(Lecture 6 and others), which can be combined to prove or derive logical formulas of the
logic £. The proof calculus of the logic £ defines a relation - between sets of formulas
and formulas, in which ® - ¢ holds iff ¢ is provable from the set of formulas ®. That is,
there is a proof of ¢ in the proof calculus of £ that uses only assumptions from ®. The
most important case for our purposes is again ® = {), in which case - ¢ holds iff ¢ is
provable in the proof calculus of £, i.e. there is a proof of ¢.

Of course, only some formulas of £ are provable, not all of them. The formula p A —p
should not be provable in any proper logic, because it is inconsistently false and, thus,
cannot possibly be valid.

We could have written down any arbitrary axiom, or we could have accidentally had
a typo in the axioms. So a crucial question we have to ask (and have asked every time
we introduced an axiom in other lectures of this course) is whether the axioms and
proof rules are sound. In a nutshell, a proof calculus is sound if all provable formulas
are valid.
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Theorem 1 (Soundness [P1a08, Pla10a, Plal2b]). The proof calculus of differential dy-
namic logic is sound, i.e. - C , which means that = ¢ implies = ¢ for all AL formulas ¢.
That is, all provable dC formulas are valid.

The significance of soundness is that, whatever formula we derive by using the dC
proof rules and axioms, we can rest assured that it is valid, i.e. true in all states. In
particular, it does not matter how big and complicated the formula might be, we know
that it is valid as long as we have a proof for it. About the axioms, we can easily
convince ourselves using a soundness proof why they are valid, and then conclude
that all provable formulas are also valid, because they follow from sound axioms by
sound proof rules.

Note 2 (Necessity of soundness). Soundness is a must for otherwise we could not trust
our own proofs.

3 Soundness Challenge for CPS

What good would it do to analyze safety of a CPS using a technique that is as faulty as
the original CPS? If an unsound analysis technique says that a CPS is correct, we are,
fundamentally, not much better off than without any analysis, because all we can con-
clude is that we did not find problems, not that there are none.! After all, an unsound
analysis technique could say “correct”, which might turn out to be a lie because the
correctness statement itself was not valid.

~

Note 3 (Challenge of soundness). In a domain that is as challenging as cyber-physical
systems and hybrid systems, it is surprisingly easy for analysis techniques to become un-
sound due to subtle flaws. Necessary conditions for soundness and the numerical decid-
ability frontier have been identified in the literature [PC07, Col07]. The crux of the matter
is that hybrid systems are subject to a numerical analogue of the halting problem of Turing
kmachines [PCO7]. )

There is a shockingly large number of approaches that, for subtle reasons, are sub-
ject to the unsoundness resulting from non-observance of the conditions identified in
[PC07, Col07]. Consequently, such approaches need some of the additional assump-
tions identified in [PC07, Col07] to have a chance to become sound.

'Notwithstanding of the fact that unsound analysis techniques can still be very useful in practice, es-
pecially if they identify problems in system designs. Yet, we should exercise great care in concluding
anything from unsound techniques that have not found a problem. As has been aptly phrased by
Dijkstra [Dij70]: “Program testing can be used to show the presence of bugs, but never to show their
absence!”
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4 First-Order Logic

Even though this course primarily studied extensions of first-order logic by dynamic
modalities for hybrid systems instead of pure first-order logic, the sequent proof rules
of propositional logic and quantifiers (instantiation and Skolemization) give a suitable
proof calculus for first-order logic. And this suitability of the proof calculus for first-
order logic is a much stronger statement than soundness.

Soundness is the question whether all provable formulas are valid and is a minimal
requirement for proper logics. Completeness studies the converse question whether all
valid formulas are provable.

The first-order logic proof calculus can be shown to be both sound and complete,
which is a result that originates from Godel’s PhD thesis [G6d30], albeit in a different
form.

~

Theorem 2 (Soundness & completeness of first-order logic). First-order logic is sound,
ie. = C F, which means that &= ¢ implies = ¢ for all first-order formulas ¢ (all provable
formulas are valid). First-order logic is complete, i.e. E C -, which means that & ¢ im-
plies = ¢ for all first-order formulas ¢ (all valid formulas are provable). In particular, the
provability relation - and the validity relation &= coincide for first-order logic: - = . The
same holds in the presence of a set of assumptions I, i.e. ' = ¢ iff ' E ¢.

g J

This lecture will not set out for a direct proof of this result, because the techniques
used for those proofs are interesting but would lead us too far astray. An indirect jus-
tification for what makes first-order logic so special that Theorem2 can hold will be
discussed later.

The following central result about compactness of first-order logic is of similar im-
portance. Compactness is involved in most proofs of Theorem 2, but also easily follows
from Theorem 2.

Theorem 3 (Compactness of first-order logic). First-order logic is compact, i.e.

I'E A < EF Aforsome finite E CT (1)

Proof. By Theorem?2, - = k. By completeness, semantic compactness theorem (1) is
equivalent to the syntactic compactness theorem:

' A < E+ Aforsome finite E C T’ (2)

Condition (2) is obvious, because provability implies that there is a proof, which can,
by definition, only use finitely many assumptions £ C T". O

Compactness is equivalent to the finiteness property, which, for that reason, is usu-
ally simply referred to as compactness:
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Corollary 4 (Finiteness). First-order logic satisfies the finiteness property, i.e.

I has a model <= all finite E C " have a model 3)

Proof. Compactness (Theorem 3) implies the finiteness property. The key observation
is that I has no model iff T F false, because if I' has no model, then false holds in all
models of I" of which there are none. Conversely, the only chance for false to hold in all
models of I' is if there are no such models, since false never holds. By Theorem 3,

I'E false <= 3finite E CT' E F false
Hence,
I'has amodel <= T E false < Vfinite E CT' E ¥ false <= all finite £ C I" have a model
It is worth noting that, conversely, the finiteness property implies compactness.

'k A < T'U{-A} has no model
<= some finite £ C I' U {—A} has no model by finiteness
<= FE FE Aforsome finite FE CT

The last equivalence uses that we might as well include —A in E, because if £ has no
model then neither does E U {—A}. O

5 Skolem-Herbrand-Lowenheim Theory

The value of a logical formula is subject to interpretation in the semantics of the logic.
In a certain sense maybe the most naive interpretation of first-order logic interprets all
terms as themselves. Such an interpretation [ is called Herbrand model. It stubbornly
interprets a term f(g(a), k(b)) in the logic as itself: [f(g(a), h(b))]; = f(g(a), h(D)). And
likewise for all other ground terms.

That may sound like a surprising and stubborn interpretation. But, even more sur-
prisingly, it is not at all an uninsightful one, at least for first-order logic. So insightful,
that it even deserves a name: Herbrand models. Certainly, it is one of the many permit-
ted interpretations.

Definition 5 (Herbrand Model). An interpretation [ is called Herbrand model if it
has the free semantics for ground terms, i.e.:

1. The domain D is the ground terms (i.e. terms without variables) Trm?(X%)
over X

2. I(f) : D™ — D;(t1,...,tp) — f(t1,...,t,) for each function symbol f of
arity n

- J
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Let T be a set of closed universal formulas. Trm®(X)(T) is the set of all ground term
instances of the formulas in T, i.e. with (all possible) ground terms in Trm°(¥) instanti-
ated for the variables of the universal quantifier prefix.

Trm®(2)(T) = {p(t1,to, ... tn) = (Va1 Voo ... Vo, d(21,29,...,2,)) €T
t1,...,t, € Trm° (%), for any n € N}

That is, for any n € N and for any formula
Ve Vay ... Vo, d(x1, 22, ..., Tp)

in T and for any ground terms ty,...,t, € Trm%(%), the set Trm°(X)(I") contains the
following ground instance of ¢:

B(t1,t2,. .., tn)

Theorem 6 (Herbrand [Her30]). Let I' be a (suitable) set of first-order formulas (i.e.
closed universal formulas without equality and with signature ¥ having at least one

constant).
TI" has a model <= T has a Herbrand model

<= ground term instances Trm®(X)(T') of T' have a model

Using the Herbrand theorem twice gives:
I has a model <= ground term instances Trm’(X)(T') of T have a Herbrand model

(Corollary 7. Validity in first-order logic is semidecidable. )

Proof. For suitable first-order formulas F' (i.e. —F satisfies the assumptions of Theo-
rem 6), semidecidability follows from the following reductions:

Fvalid <= —F unsatisfiable
< Trm"(2)(~F) have no model by Theorem 6
<= some finite subset of Trm®(X)(=F) has no Herbrand model by Corollary 4

Thus, it remains to consider the assumptions in Theorem 6 whether first-order formulas
that are not suitable can be turned into formulas that are suitable. First of all, > can be
assumed without loss of generality to have at least one constant symbol for, otherwise, a
constant can be added to X without changing validity of F'. Furthermore, a formula F'is
valid iff its universal closure is, where the universal closure of a formula F' is obtained
by prefixing F' with universal quantifiers Vo for each variable x that occurs free in
F. Finally, existential quantifiers in first-order formula —F can be removed without
affecting satisfiability by Skolemization, which introduces new function symbols much
like the quantifier proof rules from Lecture 6 did. O

15-424 LECTURE NOTES ANDRE PLATZER


http://symbolaris.com/course/fcps13/06-truth.pdf

Logical Theory & Completeness L24.7

( )

Note 10 (Limitations of Herbrand models). Herbrand models are not the cure for every-
thing in first-order logic, because they unwittingly forget about the intimate relationship
of the term 2 + 5 to the term 5 + 2 and, for that matter, to the term 8 — 1. All those terms
ought to denote the same identical object, but end up denoting different ground terms in
Herbrand models. In particular, a Herbrand model would not mind at all if a unary predi-
cate p would hold of 245 but not hold for 5 + 2 even though both ought to denote the same
object. Thus, Herbrand models are a little weak in arithmetic, but otherwise incredibly

kpowerful . D

Herbrand’s theorem has a second form with a close resemblance to the core argu-
ments of quantifier elimination in first order logic of real arithmetic from Lecture 18
and Lecture 19.

Theorem 8 (Herbrand’s theorem: Herbrand disjunctions [Her30]). For a quantifier-
free formula ¢(x) of a free variable x without equality

Jz ¢(z) valid <= ¢(t1) V- -V ¢(ty) valid for some n € N and ground terms t1, ..., t,

Proof. The proof follows directly from Theorem 6 and Corollary 4:

Jz ¢(x) valid
—3Jx ¢(x) unsatisfiable
Vz =¢(x) has no model
Trm®(X) (V2 —é(z)) has no model by Theorem 6
{=¢(t) : t ground term} has no model by definition

=¢(t1) A -+ A =¢(t,) has no model for some n and some t1, ..., ¢,
¢(t1) V- -V @(t,) valid for some n and some t1, ..., 1,

1rrerey

Theorem 8 holds for first-order formulas with multiple existential quantifiers. More
general forms of the Herbrand theorem hold for arbitrary first-order formulas that are
not in the specific form assumed above [Her30].

These more general Herbrand theorems won’t be necessary for us, because, for valid-
ity purposes, first-order formulas can be turned into the form 3z, ... 3z, ¢(x1,...,zp)
with quantifier-free ¢(z1, ..., z,) by introducing new function symbols for the univer-
sal quantifiers using essentially the quantifier proof rules from Lecture 6:

The new function symbols are usually called Skolem functions and the process called Skolemization,
because Thoralf Skolem introduced them in the first correct proof of the Skolem-Léwenheim theorem
[Sko20]. Strictly speaking, however, Herbrand functions and Herbrandization are the more adequate
names, because Jacques Herbrand introduced this dual notion for the first proof of the Herbrand the-
orem [Her30]. Skolemization and Herbrandization are duals. Skolemization preserves satisfiability
while Herbrandization preserves validity.
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I'E o(s(X1,..,Xn)), A
' Vzo(z), A

T, 6(s(X1,.., Xn) F A

LA I3z ¢g(x) F A

(Vr)

's is a new (Skolem-Herbrand) function and Xi,.., X, are all (existential) free logical variables
of Vz ¢(x).

The clou about quantifier rules Vr,dl is that they preserve validity. By soundness,
if their premiss is valid then so is their conclusion. Yet, in the case of rules Vr,3l the
converse actually holds as well. If their conclusion is valid then so is their premiss.
For rule Vr, for example, the conclusion says that ¢(x) holds for all values of x in all
interpretations where I" holds and A does not. Consequently, in those interpretations,
#(s(X1,..,Xy)) holds whatever the interpretation of s is, because s is a fresh function
symbol, which, thus, does not appear in I', A.

Lemma 9 (Herbrandization). With each first-order logic formula 1, a formula
dz; ... 3z, Sz, ..., 20)

with quantifier-free ¢(x1, ..., z,) can be associated effectively that is valid if and only if
1 is. The formula 3x; .. .3z, ¢(z1,. .., zy) uses additional function symbols that do not

koccur in . D

Theorem 8 enables a second, more straightforward proof of the semidecidability of
the validity problem of first-order logic:

Proof of Corollary 7. The semidecision procedure for validity of first-order logic formu-
las v proceeds as follows:

1. Herbrandize v to obtain a formula 3z, ... 3z, ¢(z1,...,2z,) by Lemma9, which
preserves validity.

2. Enumerate all m € N and all ground terms tf (1 <j<n,1<i<m),overthe
new signature.

a) If the propositional formula

qb(t%?"'atrll) \/"'\/Qs(t}n""?tgz)
is valid, then so is 3z ... 3z, ¢(x1, ..., x,) and, hence, v is valid.

By Theorem 8 and Lemma 9, the procedure terminates for all valid first-order formulas.
O

The procedure in this proof will always succeed but it enumerates the ground terms
for instantiation rather blindly, which can cause for quite a bit of waiting. Neverthe-
less, refinements of this idea lead to very successful automated theorem proving tech-
niques for first-order logic known as instance-based methods [BT10], which restrict the
instantiation to instantiation-on-demand in various ways to make the procedure more
goal-directed. There are also many successful automatic theorem proving procedures
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for first-order logic that are based on different principles, including tableaux and reso-
lution [Fit96].

6 Back to CPS

First-order logic is beautiful, elegant, expressive, and simple. Unfortunately, however,
it is not expressive enough for hybrid systems [Plal0a, Plal2b, Plal3]. As soon as we
come back to studying hybrid systems, the situation gets more difficult. And that is
not by accident, but, instead, a fundamental property of first-order logic and of hybrid
systems. Per Lindstrom characterized first-order logic in a way that limits which prop-
erties stronger logics could possess [Lin69]. Hybrid systems themselves are also known
not to be semidecidable.

Given that differential dynamic logic talks about properties of hybrid systems, and
Turing machines are a special case, undecidability is not surprising. We show a very
simple standalone proof of incompleteness by adapting a proof for programs, e.g.,
[Pla10c].

(Theorem 10 (Incompactness). Differential dynamic logic is not compact. )

Proof. It is easy to see that there is a set of formulas that has no model even though all
finite subsets have a model, consider:

{rx=2+1)Y2>y}U{~(z+n>y) : neN} O

Hence, differential dynamic logic does not have the finiteness property, which is equiv-
alent to compactness (Corollary 4).

Since soundness and completeness imply compactness (see proof of Theorem 3), in-
compactness implies incompleteness®, because dC is sound. An explicit proof is as
follows:

Theorem 11 (Incompleteness [P1a08]). Differential dynamic logic has no effective sound
and complete calculus.

Proof. Suppose there was an effective sound and complete calculus for dZ. Consider
a set I' of formulas that has no model in which all finite subsets have a model, which
exists by Theorem 10. ThenI' F 0 > 11is valid, thus provable by completeness. But since
the proof is effective, it can only use finitely many assumptions £ C I'. Thus EF 0 > 1
by soundness. But then the finite set £ has no model, which is a contradiction. O

3S’crictly speaking, incompleteness only follows for effective calculi. Relative soundness and completeness
can still be proved for dZ [Pla08, Plal0a, Pla12b], which gives very insightful characterizations of the
challenges and complexities of hybrid systems.
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Having said these negative (but necessary) results about differential dynamic logic
(and, by classical arguments, any other approach for hybrid systems), let’s return to the
surprisingly amazing positive properties that differential dynamic logic possesses.

For one thing, the basis of differential dynamic logic is the first-order logic of real
arithmetic, not arbitrary first-order logic. This enables a particularly pleasant form of
Herbrand disjunctions resulting from quantifier elimination in real arithmetic (recall
Lecture 18 and Lecture 19).

~

Definition 12 (Quantifier elimination). A first-order theory admits quantifier elim-
ination if, with each formula ¢, a quantifier-free formula QE(¢) can be associated
effectively that is equivalent, i.e. ¢ <+ QE(¢) is valid (in that theory).

g J
~

Theorem 13 (Tarski [Tar51]). The first-order logic of real arithmetic admits quantifier
keliminat‘ion and is, thus, decidable. )

Also recall from Lecture 18 and Lecture 19 that the quantifier-free formula QE(¢) is
constructed by substitution or virtual substitution from ¢, with some side constraints
on the parameter relations. The quantifier-elimination instantiations are more useful
than Theorem 8, because the required terms for instantiation can be computed effec-
tively and the equivalence holds whether or not the original formula ¢ was valid. This
makes it possible to use the proof calculus of differential dynamic logic to synthesize
constraints on the parameters to make an intended conjecture valid [Plal0a].

Exercises

Exercise 1. The arguments for incompleteness and incompactness of dZ hardly depend
on dZ, but, rather, only on d’s ability to characterize natural numbers. Incompleteness
and incompactness hold for other logics that characterize natural numbers due to a
famous result of Godel [G6d31]. Both the discrete and the continuous fragment of dC
can characterize the natural numbers [Pla08].

1. Show that the natural numbers can be characterized in the discrete fragment of
dZ, i.e. only using assignments and repetition.

2. Then go on to show that the natural numbers can also be characterized in the
continuous fragment of dZ, i.e. using only differential equations.

3. Conclude from this that both the discrete and the continuous fragment of d_ are
not compact, nor is any other logic that can characterize the natural numbers.
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