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Lecture Notes on
Game Proofs & Separations

André Platzer

Carnegie Mellon University
Lecture 23

1 Introduction

This lecture continues the study of hybrid games and their logic, differential game logic
[Pla13]. Lecture 20 on Hybrid Systems & Games introduced hybrid games, Lecture 21
on Winning Strategies & Regions studied the winning region semantics, and Lecture
22 on Winning & Proving Hybrid Games identified the winning region semantics for
loops in hybrid games as well as a study of the axioms of hybrid games.

These lecture notes are based on [Plal3], where more information can be found on
logic and hybrid games.

2 Recall: Semantics of Hybrid Games

Recall the semantics of hybrid games and two results from Lecture 22 on Winning &
Proving Hybrid Games.
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L23.2 Game Proofs & Separations

é )

Definition 1 (Semantics of hybrid games). The semantics of a hybrid game o is a
function ¢, (+) that, for each interpretation I and each set of Angel’s winning states
X C S, gives the winning region, i.e. the set of states ¢, (X) from which Angel has
a winning strategy to achieve X (whatever strategy Demon chooses). It is defined
inductively as follows”

1l op(X)={res: uﬁlf)]]” € X}

2. qu—peu(X) ={p(0) €S : ¢(r) € X for some r € R>g and (differentiable)

¢ : [0,7] = Ssuchthat p(¢) € [H]' and %(C) = [0] (¢ forall0 < ¢ <r}

on(X) = [H]'n X

Saus(X) = ca(X) Ugg(X)

So;8(X) = a(sp(X))

o (X)={ZC S : XUc(Z)C 2}

sat(X) = (sa(XE))E

N S O = W

The winning region of Demon, i.e. the set of states d,(X) from which Demon has
a winning strategy to achieve X (whatever strategy Angel chooses) is defined in-
ductively as follows

1. 6, g(X)={res: /W exy

2. dp—pea(X) ={p0) € S : ¢(r) € X for all »r € R>( and (differentiable)
¢ : [0,7] = Ssuchthat p(¢) € [H] and %(C) = [0, forall0 < ¢ <r}

3. drp(X) = ([H])Pu X

4. Saus(X) = 64(X) Nég(X)

5. 0a;8(X) = ba(0s(X))

6. 0o (X)=U{ZCS : ZC XNba(2)}
7. 5oa(X) = (6a(X))E

* The semantics of a hybrid game is not merely a reachability relation between states as for hybrid
systems [Plal2], because the adversarial dynamic interactions and nested choices of the players
have to be taken into account.

J
~
Lemma 2 (Monotonicity [Pla13]). The semantics is monotone, i.e. 5o (X) C ¢o(Y) and
Ia(X) C6a(Y) forall X CY.

N\ (

J
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Game Proofs & Separations L23.3

Theorem 3 (Consistency & determinacy [Plal3]). Hybrid games are consistent and
determined, i.e. E ={a)—¢ < [a]o.

3 Hybrid Game Proofs

An axiomatization for differential game logic has been found in previous work [Pla13],
where we refer to for more details.

~

Note 4 (Differential game logic axiomatization [Pla13]).
(D) (o < ~{a)=¢
(=) (z:=0)¢(z) + ¢(0)
() (@' = 0)¢ <> >0 (z:=y(t))¢ /() =0)
(7)) (PH)g < (H A @)
(W) (@U B)d <> (a)g V (B)¢
;) (a: B)g < () (B) ¢
(") oV () (a")p = ()¢
(1) (ah)¢ & ~()=¢
¢ =
(a)¢ = ()
¢V ()Y =9
(a*)p = ¢
. o [a]g

(ind) S Tole
\_ J

The proof rules FP and ind are equivalent in the sense that one can be derived from
the other in the dG£ calculus [Plal3].

Example 4. The dual filibuster game formula from Lecture 20 proves easily in the dGL

(
(
(M)

(FP)
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L23.4 Game Proofs & Separations

calculus by going back and forth between players [Pla13]:

*
F2=0-0=0vV1=0

e =0=(z:=02=0V(z:=1)z=0
WUp=0—o(x:=0Uz:=1)z=0
<d>x:0ﬁﬁ<x::()ﬂ:c::1>—| =0

x
[] r=0—=[z:=0Nx:=1z=0

lndx:0—>[(w::0ﬂaﬁ::1)*]w:0
<Ul>:z:0—><(a:::OUQU::1)X z=0

4 Soundness

Theorem 5 (Soundness [Plal3]). The dGL proof calculus in Fig. 4 is sound, i.e. all prov-
able formulas are valid.

Proof. The full proof can be found in [Pla13]. We just consider a few cases to exemplify
the fundamentally more general semantics of hybrid games arguments compared to
hybrid systems arguments. To prove soundness of an equivalence axiom ¢ «+ v, show
[¢]" = [¢] for all interpretations I with any set of states S.

(U) Haup)gl’ = saus(8]’) = sa([6])Uss([8]7) = )l UL(B)A] = [(e)oV (B)e]’
) s BYl" = sasp8]") = salss([8]") = sa([(B)6]') = [(e)(B)0]".
() [PH) = sen([¢]") = [H]" N [g]" = [H A ¢l

] is sound by Theorem 3.

M Assume the premise ¢ — 9 is valid in interpretation 7, i.e. [¢]" € [¢]’. Then the

conclusion (a)¢ — ()¢ is valid in I, i.e. [(a)d]” = ca([0]") C a([¥]") = [(a)v]’
by monotonicity (Lemma 2). O

5 Separating Axioms

The axioms of differential game logic in Fig.4 are sound for hybrid systems as well,
because every hybrid system is a (single player) hybrid game. With a few exceptions,
they look surprisingly close to the axioms for hybrid systems from Lecture 5. In order
to understand the fundamental difference between hybrid systems and hybrid games,
it is instructive to also investigate separating axioms, i.e. axioms of hybrid systems that
are not sound for hybrid games. Some of these are summarized in Fig. 1, referring to
[Pla13] for details.
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Game Proofs & Separations L23.5

al(p > 0) = (ald— [ad) M {a)dV () — (@)($V )
) o=
[olo Me 16 > 1819
D1 N pg —

[a]g1 A [a]d2 — [al
()Fz ¢ — T () (r & a) % Jz (o) — (a)Tx @ (x € )

N " " R OR

[@*](¢ — [a]@) = (¢ = [a*]¢)
B ()¢ — ¢V (") (=¢ A {@)¢)

Figure 1: Separating axioms: The axioms and rules on the left are sound for hybrid
systems but not for hybrid games. The related axioms on the right are sound
for hybrid games.

6 Repetitive Diamonds — Convergence vs. lteration

More fundamental differences between hybrid systems and hybrid games also exist
in terms of convergence rules, even if these have played a less prominent role in this
course so far. These differences are discussed in detail elsewhere [Plal3]. In a nutshell,
Harel’s convergence rule [HMP77] is not a separating axiom, because it is sound for
dGZ, just unnecessary, and, furthermore, not even particularly useful for hybrid games
[Plal13]. The hybrid version of Harel’s convergence rule [P1a08] for d_ reads as follows
(it assumes that v does not occur in «):

ev+1)Av+1>0F (a)p(v)

(con) I, Fvp(v) F (a*)Fv<0¢(v), A

The dZ proof rule con expresses that the variant ¢(v) holds for some real number v < 0
after repeating « sufficiently often if ¢ (v) holds for some real number at all in the begin-
ning (antecedent) and, by premise, p(v) can decrease after some execution of a by 1 (or
another positive real constant) if v > 0. This rule can be used to show positive progress
(by 1) with respect to ¢(v) by executing a. Just like the induction rule ind is often used
with a separate premiss for the initial and postcondition check (ind’ from Lecture 7 on
Loops & Invariants), rule con is often used in the following derived form:

L' 3vp),A Yv>0(pv) = (a)p(v—1)) Fv<0p(v) - P
I'F (a")y, A

(con)
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L23.6 Game Proofs & Separations

The following sequent proof shows how convergence rule con’ can be used to prove a
simple d liveness property of a hybrid program:

*
R * (o) Rx<n—|—2/\n—l—1>0|—x—1<n—|—1 R *
x>0F3dInr<n+1 r<n+2An+1>0F(z:=z—1)z<n+1 In<Oz<n+lFz<l
x>0F{((z:=2-1)")0<z<1
r>0—= ((z:=0-1)"2r <1
Let’s compare how dGL proves diamond properties of repetitions based on the itera-
tion axiom (*).

con’

—T

Example 6 (Non-game system). The simple non-game dGL formula
z>0—= (z:=2—-1)"0<z<1

is provable, shown in Fig. 2, where (a*)0 < z < 1isshort for ((z:=2 — 1)")(0 < z < 1).

R

Ve (0 <z <1Vp(x—1)—=px)) = (x>0 px))
(=) Ve (0<z <1V (z:=a—1)p(x)— px)) = (x>0 — p(z))
Byrz0<z<1vVig=z—)a0<z<lo(aW0<z<l) = (@>0—(a)0<z<]l)
)0 Ve(0<z<lV(r:=rz-1)(@)0<z<1l—(a"0<z<]1)
MP r>0—={(a)0<z<1

Figure 2: dGL Angel proof for non-game system Example 6
z>0—= {((z:=2-1)"N0<z<1

Example 7 (Choice game). The dGL formula
r=1Na=1—={(z:=aa:=0Nz:=0)")z #1
is provable as shown in Fig.3, where 3 N v is short for  := a;a := 0Nz := 0 and
(BN~)")Yx # 1short for ((z:=a;a:=0Nz:=0)")z # 1:
Example 8 (2-Nim-type game). The dGL formula
z>0—= (zi=z—1Nz:=2—-2)") 0 <z <2

is provable as shown in Fig.3, where 5 N v is short for z := 2 — 1Nz := 2 — 2 and
(BNny)"0<z<2shortfor (z:=x—1Nz:=2—-2)"0<z<2:
Example 9 (Hybrid game). The dGL formula

(z:=L2 =1%0Uz:=2-1)")0<z<1

is provable as shown in Fig.5, where the notation ((8U~)*)0 < z < 1 is short for
(x:=1;2' =1%Uz:=2 —1)")(0 < z < 1): The proof steps for 3 use in (') that ¢ — z +1t
is the solution of the differential equation, so the subsequent use of (:=) substitutes 1
in for z to obtain ¢t — 1 + ¢. Recall from Lecture 22 that the winning regions for this
formula need >w iterations to converge. It is still provable easily.
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R Va (z # 1 \/p(a 0) Ap(0,a) = p(x,a)) = (true — p(x,a))
WA= Va (x £ 1V (B)p(w, a) A (1)p(w, a) = p(w,a)) = (irue — p(x,a))
0 Va(x £ 1V (B0 7)p(x,a) — p(x,a) = (true — p(x, a))

P Va(@ £ 1V BNN(BNY))e £1 = (BNy) ) #1) = (true —» (BN1) )z # 1)
(") v MP true = ((BN7)" )z #1

R z=1ANa=1—={(BNy) )z #1

Figure 3: dGL Angel proof for choice game Example 7
r=1Na=1— ((z:=a;a:=0Nz:=0)")x #1

R

Ve (0<x<2Vp(x —1) Ap(x —2) = p(x)) — (true — p(z))

v vz (0<w<2V (B)p(x) A (1)p(x) = p(x)) = (true — p(x))
(L)) Yz (0<z<2 V (BN )p(z) = p(x)) — (true — p(x))
Yy (0<z<2 Vv (BN {((BN7)")0<z<2 — ((BN7))0<z<2) — (true — (3N ~)")0<z<2)
{*),v.MP true — ((BN7)")0<z<2
R r>0— ((BNy))0<z<2

Figure 4: dGL Angel proof for 2-Nim-type game Example 8
z>0— (z:=z—1Nz:=2-2)")0<z<2

=

Ve (0 <z <1VVt>0p(l+t)Vp(zr—1) — p(x)) — (true — p(x))

(=) Vo (0 <z <1V (z:=1)-3t>0(z:=x 4 t)-p(z) V p(z — 1) = p(z)) = (true — p(z))
() Ve (0<ax<1V{(z:=1)=~(2' =1)—p(z)Vplx —1) = p(x)) = (true — p(x))
69 Y (0 < @ < 1V (B)p(x) v (1)p(x) = plx)) = (true — p(x))
© Vo (0 <z <1V (BUy)p(x) — pla)) — (true — p(x))
>‘j/SMva (0<z<1V (BUNBUNN0<z <1 (BUNN0<z<1)—= (true — (BU~) N0 <z < 1)
)Y, 1

Figure 5: dGL Angel proof for hybrid game Example 9
(=12 =1%Uz:=2-1)N0<z <1
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L23.8 Game Proofs & Separations

7 There and Back Again Game

Quite unlike in hybrid systems and (poor test) differential dynamic logic [Pla08, Pla12],
every hybrid game containing a differential equation 2z’ = 6 & H with evolution do-
main constraints H can be replaced equivalently by a hybrid game without evolution
domain constrains (even using poor tests, i.e. each test 7H uses only first-order formu-
las H). Evolution domains are definable in hybrid games and can, thus, be removed
equivalently.

Lemma 10 (Domain reduction [Pla13, Plal12]). Evolution domains of differential equa-
tions are definable as hybrid games: For every hybrid game there is an equivalent hybrid
game that has no evolution domain constraints, i.e. all continuous evolutions are of the
form ' = 6.

Proof. For notational convenience, assume the (vectorial) differential equation 2’ = 0(z)
to contain a clock x(, = 1 and that t( and z are fresh variables. Then 2/ = 6(x) & H(x) is
equivalent to the hybrid game:

to:=x0; 2’ = 0(x); (z:=1;2" = —0(2))%; ?(20 > to — H(2)) (1)

See Fig. 6 for an illustration. Suppose the current player is Angel. The idea behind

T,z Angel plays forward game, reverts flow and time
Zo;
zZ:=2 0 . 1 eege
¢ Demon checks H in backwards game until initial
> t()
S = —0(2) .
| to :=xo r

Figure 6: “There and back again game”: Angel evolves x forwards in time along
' =6(z), Demon checks evolution domain backwards in time along
2/ = —6(z) on a copy z of the state vector =

game equivalence (1) is that the fresh variable ¢, remembers the initial time xp, and
Angel then evolves forward along 2/ = 6(x) for any amount of time (Angel’s choice).
Afterwards, the opponent Demon copies the state  into a fresh variable (vector) z that
he can evolve backwards along (2’ = —6(z))? for any amount of time (Demon’s choice).
The original player Angel must then pass the challenge ?(z9 > tg — H(2)), i.e. Angel
loses immediately if Demon was able to evolve backwards and leave region H(z) while
satisfying zo > to, which checks that Demon did not evolve backward for longer than
Angel evolved forward. Otherwise, when Angel passes the test, the extra variables ¢y, z
become irrelevant (they are fresh) and the game continues from the current state = that
Angel chose in the first place (by selecting a duration for the evolution that Demon
could not invalidate). O
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Game Proofs & Separations L23.9

Lemma 10 can eliminate all evolution domain constraints equivalently in hybrid games
from now on. While evolution domain constraints are fundamental parts of standard
hybrid systems [Hen96, HKPV95, ACHH92, Pla08], they turn out to be mere conve-
nience notation for hybrid games. In that sense, hybrid games are more fundamental
than hybrid systems, because they feature elementary operators.

Exercises

Exercise 1 (***). The following formula was proved using dGL’s hybrid games type proof
rules in Fig. 2
z>0— (z:=2—-1)"0<z<1

Try to prove it using the convergence rule con’ instead.
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