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1 Introduction

This lecture continues the study of hybrid games and their logic, differential game logic
[Pla13], that Lecture 20 on Hybrid Systems & Games and Lecture 21 on Winning Strate-
gies & Regions started.

These lecture notes are based on [Pla13], where more information can be found on
logic and hybrid games.

2 Deficiencies of the ω-Strategic Semantics

Lecture 21 on Winning Strategies & Regions raised the question whether the semantics
of repetition could be defined by the ω-strategic semantics

ςα∗(X)
?
= ςωα (X) =

⋃
n<ω

ςnα(X)

For winning condition X ⊆ S the iterated winning region of α is defined inductively:

ς0α(X)
def
= X

ςκ+1
α (X)

def
= X ∪ ςα(ςκα(X))

Does this give the right semantics for repetition of hybrid games? Does it match the
existence of winning strategies that we were hoping to define?

Would the following dGL formula be valid in the ω-strategic semantics?

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗〉 (0 ≤ x < 1) (1)

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES November 18, 2013 ANDRÉ PLATZER
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L22.2 Winning & Proving Hybrid Games

Abbreviate
〈(x := 1;x′ = 1d︸ ︷︷ ︸

β

∪ x := x− 1︸ ︷︷ ︸
γ

)

︸ ︷︷ ︸
α

∗〉 (0 ≤ x < 1)

It is easy to see that ςωα ([0, 1)) = [0,∞), because ςnα([0, 1)) = [0, n) for all n ∈ N by a
simple inductive proof (recall α ≡ β ∪ γ):

ς1β∪γ([0, 1)) = [0, 1)

ςn+1
β∪γ ([0, 1)) = [0, 1) ∪ ςβ∪γ(ςnβ∪γ([0, 1)))

IH
= [0, 1) ∪ ςβ∪γ([0, n))

= [0, 1) ∪ ςβ∪γ([0, n)) ∪ ςβ([0, n)) = [0, 1) ∪ ∅ ∪ [1, n+ 1) = [0, n+ 1)

Consequently,
ςωα ([0, 1)) =

⋃
n<ω

ςnα([0, 1)) =
⋃
n<ω

[0, n) = [0,∞)

Hence, the ω−semantics would indicate that the hybrid game (1) can exactly be won
from all initial states in [0,∞), that is, for all initial states that satisfy 0 ≤ x.

Unfortunately, this is quite some nonsense. Indeed, the hybrid game in dGL formula
(1) can be won from all initial states that satisfy 0 ≤ x. But it can also be won from
other initial states! So the ω-strategic semantics ςωα ([0, 1)) misses out on winning states.
It is way too small for a winning region. There are cases, where the ω-semantics is
minuscule compared to the true winning region and arbitrarily far away from the truth
[Pla13].

In (1), this ω-level of iteration of the strategy function for winning regions misses out
on Angel’s perfectly reasonable winning strategy “first choose x := 1;x′ = 1d and then
always choose x := x− 1 until stopping at 0 ≤ x < 1”. This winning strategy wins from
every initial state in R, which is a much bigger set than ςωα ([0, 1)) = [0,∞).

Now this is the final answer for the winning region of (1). In particular, the dGL
formula (1) is valid. Yet, is there a direct way to see that ςωα ([0, 1)) = [0,∞) is not the
final answer for (1) without having to put the winning region computations aside and
constructing a separate ingenious winning strategy?

Before you read on, see if you can find the answer for yourself.
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Winning & Proving Hybrid Games L22.3

The crucial observation is the following. The fact ςωα ([0, 1)) = [0,∞) shows that the
hybrid game in (1) can be won from all nonnegative initial values with at most ω (“first
countably infinitely many”) steps. Let’s recall how the proof worked, which showed
ςnα([0, 1)) = [0, n) for all n ∈ N. Its inductive step basically showed that if, for whatever
reason (by inductive hypothesis really), [0, n) is in the winning region, then [0, n + 1)
also is in the winning region by simply applying ςα(·) to [0, n).

How about doing exactly that again? For whatever reason (i.e. by the above argu-
ment), [0,∞) is in the winning region. Doesn’t that mean that ςα([0,∞)) should again
be in the winning region by exactly the same inductive argument above?

Before you read on, see if you can find the answer for yourself.
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L22.4 Winning & Proving Hybrid Games

Note 1. Whenever a set Y is in the winning region ςα∗(X) of repetition, then ςα(Y ) also
should be in the winning region ςα∗(X), because it is just one step away from Y and α∗

could simply repeat once more.

Thus, the winning region ς(β∪γ)∗([0,∞)) should also contain

ςβ∪γ([0,∞)) = ςβ([0,∞)) ∪ ςγ([0,∞)) = R ∪ [0,∞) = R

Beyond that, the winning region cannot contain anything else, because R is the whole
state space. And, indeed, trying to use the winning region construction once more on
R does not change the result:

ςβ∪γ(R) = ςβ(R) ∪ ςγ(R) = R ∪ [0,∞) = R

This result, then coincides with what the ingenious winning strategy above told us as
well: formula (1) is valid, because there is a winning strategy for Angel from every
initial state. Except that the repeated ςβ∪γ(·) winning region construction seems more
systematic than an ingenious guess of a smart winning strategy. So it gives a more
constructive and explicit semantics.

Let’s recap. In order to find the winning region of the hybrid game described in (1),
it took us not just infinitely many steps, but more than that. After ω many iterations to
arrive at ςωα ([0, 1)) = [0,∞), it took us one more step to arrive at

ς(β∪γ)∗([0, 1)) = ςω+1
α ([0, 1)) = R

where we denote the number of steps we took overall by ω + 1, since it was one more
step than (first countable) infinitely many (i.e. ω many); see Fig. 1 for an illustration.
More than infinitely many steps to get somewhere are plenty. Even worse: there are
cases where even ω + 1 has not been enough of iteration to get to the repetition. The
number of iterations needed to find ςα∗(X) could in general by much larger [Pla13].

ςω+1
α (X) ςωα (X) · · · ς3α(X) ς2α(X) ςα(X) X

Figure 1: Iteration ςω+1
α (X) of ςα(·) from winning condition X = [0, 1) stops when ap-

plying ςα(·) to the ωth infinite iteration ςωα (X).
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Winning & Proving Hybrid Games L22.5

The existence of the above winning strategy is only found at the level ςω+1
α ([0, 1)) =

ςα([0,∞)) = R. Even though any particular use of the winning strategy in any game
play uses only some finite number of repetitions of the loop, the argument why it will
always work requires > ω many iterations of ςα(·), because Demon can change x to
an arbitrarily big value, so that ω many iterations of ςα(·) are needed to conclude that
Angel has a winning strategy for any positive value of x. There is no smaller upper
bound on the number of iterations it takes Angel to win, in particular Angel cannot
promise ω as a bound on the repetition count, which is what the ω-semantics would
effectively require her to do. But strategies do converge after ω + 1 iterations.

Note 2. The ω-semantics is inappropriate, because it can be arbitrarily far away from
characterizing the winning region of hybrid games.

3 Characterizing Winning Repetitions

Is there a more immediate way of characterizing the winning region ςα∗(X) of repeti-
tion?

Whenever a set Y is in the winning region ςα∗(X) of repetition, then ςα(Y ) also should
be in the winning region ςα∗(X), because it is just one step away from Y and α∗ could
simply repeat once more. Thus,

Y ⊆ ςα∗(X) ⇒ ςα(Y ) ⊆ ςα∗(X)

In particular, the set Y def
= ςα∗(X) itself is expected to satisfy

ςα(ςα∗(X)) ⊆ ςα∗(X) (2)

because repeating α once more from the winning region ςα∗(X) of repetition of α should
not give us any states that did not already have a winning strategy in α∗. Consequently,
a set Z ⊆ S only qualifies as a candidate for being the winning region ςα∗(X) of repeti-
tion if

ςα(Z) ⊆ Z (3)

That is, strategyzing along α from Z does not give anything that Z would not already
know about.

So what is this set Z? Is there only one choice? Or multiple? If there are multiple
choices, which Z is it? Does such a Z always exist, even?

Before you read on, see if you can find the answer for yourself.
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L22.6 Winning & Proving Hybrid Games

One such Z always exist, even though it may be rather boring. The empty set Z def
= ∅

certainly satisfies ςα(∅) = ∅, because it is rather hard to win a game that requires Angel
to enter the empty set of states to win.

But the empty set is maybe a bit small. The winning region ςα∗(X) of repetition
of α should at least contain the winning condition X , because the winning condition
X is particularly easy to reach from states in X that have already let Angel won by
simply suggesting Angel to repeat zero times. Consequently, the only Z that qualify as
a candidate for being ςα∗(X) should satisfy (3) and

X ⊆ Z (4)

Both conditions (3) and (4) together can be summarized in a single condition as follows:

Note 3 (Prefixpoint). Every candidate Z for the winning region ςα∗(X) satisfies:

X ∪ ςα(Z) ⊆ Z (5)

Again: what is this set Z that satisfies (5)? Is there only one choice? Or multiple? If
there are multiple choices, which Z is it? Does such a Z always exist, even?

Before you read on, see if you can find the answer for yourself.
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Winning & Proving Hybrid Games L22.7

One such Z certainly exists. The empty set does not qualify unless X = ∅. The
set X itself is too small unless the game has no incentive to start repeating, because

ςα(X) ⊆ X . But the full space Z def
= S always satisfies (5) trivially. Now, the whole

space is a little big to call it Angel’s winning region independently of the hybrid game
α. Even if the full space may very well be the winning region for some particularly De-
monophobic Angel-friendly hybrid games like (1), it is hardly the right winning region
for any arbitrary α∗. For example for Demon’s favorite game where he always wins,
ςα∗(X) had better be ∅, not S. Thus, the largest solution Z of (5) hardly qualifies.

So which solution Z of (5) should be the definition of ςα∗(X) now?
Before you read on, see if you can find the answer for yourself.
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L22.8 Winning & Proving Hybrid Games

Among the many Z that solve (5), the largest one is not informative, because the
largest Z simply degrades to S. So smaller solutions Z are preferable. How do multiple
solutions relate at all? Suppose Y,Z are both solutions of (5). That is

X ∪ ςα(Y ) ⊆ Y (6)
X ∪ ςα(Z) ⊆ Z (7)

Then, by monotonicity lemma, Lemma 3:

X ∪ ςα(Y ∩ Z)
mon
⊆ X ∪ ςα(Y ) ∩ ςα(Z)

(6),(7)
⊆ Y ∩ Z (8)

Hence, by (8), the intersection Y ∩Z of solutions Y and Z of (5) also is a solution of (5):

Lemma 1 (Intersection closure). Whenever there are two solutions Y,Z of (5), a (possi-
bly) smaller solution of (5) can be obtained by intersection Y ∩ Z.

So whenever there are two solutions Z1, Z2 of (5), their intersection Y1∩Z2 solves (5).
When there’s yet another solution Z3 of (5), their intersection Y1 ∩ Y2 ∩ Y3 also solves
(5). Similarly for any larger family of solutions. If we keep on intersecting solutions,
we will arrive at smaller solutions until, some fine day, there’s not going to be a smaller
one. This yields the smallest solution Z of (5) which can be characterized directly.

Among the many Z that solve (5), the smallest Z that solves (5) is informative and
can be used to define ςα∗(X):

ςα∗(X) =
⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z} (9)

The set on the right-hand side of (9) is an intersection of solutions, thus, a solution by
Lemma 1 (or its counterpart for families of solutions). Hence ςα∗(X) itself satisfies (5):

X ∪ ςα(ςα∗(X)) ⊆ ςα∗(X) (10)

Also compare this with what we argued earlier in (2). Could it be the case that the
inclusion in (10) is strict, i.e. not equals? No this cannot happen, because ςα∗(X) is the

smallest. In detail, by (10), the set Z def
= X ∪ ςα(ςα∗(X)) satisfies Z ⊆ ςα∗(X) and, thus,

by Lemma 3:

X ∪ ςα(Z)
mon
⊆ X ∪ ςα(ςα∗(X)) = Z

Consequently, both inclusions hold, so ςα∗(X) satisfies

X ∪ ςα(ςα∗(X)) = ςα∗(X) (11)

That is, ςα∗(X) is even a fixpoint solving the equation

X ∪ ςα(Z) = Z (12)
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Winning & Proving Hybrid Games L22.9

and it is the least fixpoint, i.e. the smallest Z solving the equation (12).
The fact that ςα∗(X) is defined as the least of the fixpoints makes sure that Angel

only wins games by a well-founded number of repetitions. That is, she only wins a
repetition if she ultimately stops repeating, not by postponing termination forever. See
[Pla13] for more details.

It is also worth noting that it would still have been possible to make the iteration of
winning region constructions work out using the seminal fixpoint theorem of Knaster-
Tarski. Yet, this requires the iterated winning region constructions to go significantly
transfinite [Pla13] way beyond ω.

4 Semantics of Hybrid Games

The semantics of differential game logic from Lecture 21 was still pending a definition
of the winning regions ςα(·) and δα(·) for Angel and Demon, respectively, in the hybrid
game α. Rather than taking a detour for understanding those by operational game se-
mantics (as in Lecture 20), the winning regions of hybrid games can be defined directly,
giving a denotational semantics to hybrid games.

The only difference compared to the definition in Lecture 21 is the new case of repe-
tition α∗.
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L22.10 Winning & Proving Hybrid Games

Definition 2 (Semantics of hybrid games). The semantics of a hybrid game α is a
function ςα(·) that, for each interpretation I and each set of Angel’s winning states
X ⊆ S, gives the winning region, i.e. the set of states ςα(X) from which Angel has
a winning strategy to achieve X (whatever strategy Demon chooses). It is defined
inductively as followsa

1. ςx:=θ(X) = {ν ∈ S : ν
[[θ]]ν
x ∈ X}

2. ςx′=θ&H(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for some r ∈ R≥0 and (differentiable)
ϕ : [0, r]→ S such thatϕ(ζ) ∈ [[H]]I and dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

3. ς?H(X) = [[H]]I ∩X

4. ςα∪β(X) = ςα(X) ∪ ςβ(X)

5. ςα;β(X) = ςα(ςβ(X))

6. ςα∗(X) =
⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z}

7. ςαd(X) = (ςα(X
{)){

The winning region of Demon, i.e. the set of states δα(X) from which Demon has
a winning strategy to achieve X (whatever strategy Angel chooses) is defined in-
ductively as follows

1. δx:=θ(X) = {ν ∈ S : ν
[[θ]]ν
x ∈ X}

2. δx′=θ&H(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for all r ∈ R≥0 and (differentiable)
ϕ : [0, r]→ S such thatϕ(ζ) ∈ [[H]]I and dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

3. δ?H(X) = ([[H]]I){ ∪X

4. δα∪β(X) = δα(X) ∩ δβ(X)

5. δα;β(X) = δα(δβ(X))

6. δα∗(X) =
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)}

7. δαd(X) = (δα(X
{)){

a The semantics of a hybrid game is not merely a reachability relation between states as for hybrid
systems [Pla12], because the adversarial dynamic interactions and nested choices of the players
have to be taken into account.

This notation uses ςα(X) instead of ςIα(X) and δα(X) instead of δIα(X), because the inter-
pretation I that gives a semantics to predicate symbols in tests and evolution domains is
clear from the context. Strategies do not occur explicitly in the dGL semantics, because
it is based on the existence of winning strategies, not on the strategies themselves.
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Winning & Proving Hybrid Games L22.11

Just as the semantics dL, the semantics of dGL is compositional, i.e. the semantics of
a compound dGL formula is a simple function of the semantics of its pieces, and the
semantics of a compound hybrid game is a function of the semantics of its pieces. Fur-
thermore, existence of a strategy in hybrid game α to achieve X is independent of any
game and dGL formula surrounding α, but just depends on the remaining game α it-
self and the goal X . By a simple inductive argument, this shows that one can focus on
memoryless strategies, because the existence of strategies does not depend on the con-
text, hence, by working bottom up, the strategy itself cannot depend on past states and
choices, only the current state, remaining game, and goal. This also follows from a gen-
eralization of a classical result by Zermelo. Furthermore, the semantics is monotone,
i.e. larger sets of winning states induce larger winning regions.

Monotonicity is what Lecture 21 looked into for the case of hybrid games without
repetition. But it continues to hold for general hybrid games.

Lemma 3 (Monotonicity [Pla13]). The semantics is monotone, i.e. ςα(X) ⊆ ςα(Y ) and
δα(X) ⊆ δα(Y ) for all X ⊆ Y .

Proof. A simple check based on the observation that X only occurs with an even num-
ber of negations in the semantics. For example, ςα∗(X) =

⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆

Z} ⊆
⋂
{Z ⊆ S : Y ∪ ςα(Z) ⊆ Z} = ςα∗(Y ) if X ⊆ Y . Likewise, X ⊆ Y implies

X{ ⊇ Y {, hence ςα(X{) ⊇ ςα(Y {), so ςαd(X) = (ςα(X
{)){ ⊆ (ςα(Y

{)){ = ςαd(Y ).

Monotonicity implies that the least fixpoint in ςα∗(X) and the greatest fixpoint in δα∗(X)
are well-defined [HKT00, Lemma 1.7]. The semantics of ςα∗(X) is a least fixpoint, which
results in a well-founded repetition of α, i.e. Angel can repeat any number of times but
she ultimately needs to stop at a state in X in order to win. The semantics of δα∗(X) is
a greatest fixpoint, instead, for which Demon needs to achieve a state in X after every
number of repetitions, because Angel could choose to stop at any time, but Demon still
wins if he only postpones X{ forever, because Angel ultimately has to stop repeating.
Thus, for the formula 〈α∗〉φ, Demon already has a winning strategy if he only has a
strategy that is not losing by preventing φ indefinitely, because Angel eventually has to
stop repeating anyhow and will then end up in a state not satisfying φ, which makes
her lose. The situation for [α∗]φ is dual.

5 Hybrid Game Axioms

An axiomatization for differential game logic has been found in previous work [Pla13],
where we refer to for more details. The study of proof rules for differential game logic
will be deferred to next lecture. But its axioms can be discussed today.
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L22.12 Winning & Proving Hybrid Games

Note 7 (Differential game logic axioms [Pla13]).
([·]) [α]φ↔ ¬〈α〉¬φ

(〈:=〉) 〈x := θ〉φ(x)↔ φ(θ)

(〈′〉) 〈x′ = θ〉φ↔ ∃t≥0 〈x := y(t)〉φ (y′(t) = θ)

(〈?〉) 〈?H〉φ↔ (H ∧ φ)

(〈∪〉) 〈α ∪ β〉φ↔ 〈α〉φ ∨ 〈β〉φ

(〈;〉) 〈α;β〉φ↔ 〈α〉〈β〉φ

(〈∗〉) φ ∨ 〈α〉〈α∗〉φ→ 〈α∗〉φ

(〈d〉) 〈αd〉φ↔ ¬〈α〉¬φ

6 Determinacy

Every particular game play in a hybrid game is won by exactly one player, because
hybrid games are zero-sum and there are no draws. Hybrid games actually satisfy a
much stronger property: determinacy, i.e. that, from any initial situation, either one of
the players always has a winning strategy to force a win, regardless of how the other
player chooses to play.

If, from the same initial state, both Angel and Demon had a winning strategy for op-
posing winning conditions, then something would be terribly inconsistent. It cannot
happen that Angel has a winning strategy in hybrid game α to get to a state where ¬φ
and, from the same initial state, Demon supposedly also has a winning strategy in the
same hybrid game α to get to a state where φ holds. After all, a winning strategy is
a strategy that makes that player win no matter what strategy the opponent follows.
Hence, for any initial state, at most one player can have a winning strategy for comple-
mentary winning conditions. This argues for the validity of � ¬([α]φ ∧ 〈α〉¬φ), which
can also be proved (Theorem 4).

So it cannot happen that both players have a winning strategy for complementary
winning conditions. But it might still happen that no one has a winning strategy, i.e.
both players can let the other player win, but cannot win strategically themselves (re-
call, e.g., the filibuster example from Lecture 20, which first appeared as if no player
might have a winning strategy but then turned out to make Demon win). This does not
happen for hybrid games, though, because at least one (hence exactly one) player has a
winning strategy for complementary winning conditions from any initial state.

15-424 LECTURE NOTES ANDRÉ PLATZER
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Winning & Proving Hybrid Games L22.13

Theorem 4 (Consistency & determinacy [Pla13]). Hybrid games are consistent and
determined, i.e. � ¬〈α〉¬φ↔ [α]φ.

Proof. The proof shows by induction on the structure of α that ςα(X{){ = δα(X) for all
X ⊆ S and all I with some set of states S, which implies the validity of ¬〈α〉¬φ↔ [α]φ

using X def
= [[φ]]I .

1. ςx:=θ(X{){ = {ν ∈ S : ν
[[θ]]ν
x 6∈ X}{ = ςx:=θ(X) = δx:=θ(X)

2. ςx′=θ&H(X
{){ = {ϕ(0) ∈ S : ϕ(r) 6∈ X for some 0 ≤ r ∈ R and some (dif-

ferentiable) ϕ : [0, r]→ S such that dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[H]]I for all

0 ≤ ζ ≤ r}{ = δx′=θ&H(X), because the set of states from which there is no
winning strategy for Angel to reach a state in X{ prior to leaving [[H]]I along
x′ = θ&H is exactly the set of states from which x′ = θ&H always stays in X

(until leaving [[H]]I in case that ever happens).

3. ς?H(X{){ = ([[H]]I ∩X{){ = ([[H]]I){ ∪ (X{){ = δ?H(X)

4. ςα∪β(X{){ = (ςα(X
{)∪ ςβ(X{)){ = ςα(X

{){ ∩ ςβ(X{){ = δα(X)∩ δβ(X) = δα∪β(X)

5. ςα;β(X{){ = ςα(ςβ(X
{)){ = ςα(δβ(X){){ = δα(δβ(X)) = δα;β(X)

6. ςα∗(X{){ =
(⋂
{Z ⊆ S : X{ ∪ ςα(Z) ⊆ Z}

){
=
(⋂
{Z ⊆ S : (X ∩ ςα(Z){){ ⊆ Z}

){
=
(⋂
{Z ⊆ S : (X ∩ δα(Z{)){ ⊆ Z}

){
=
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)} = δα∗(X). 1

7. ςαd(X{){ = (ςα((X
{){){){ = δα(X

{){ = δαd(X)

Exercises

Exercise 1. Explain how often you will have to repeat the winning region construction
to show that the following dGL formula is valid:

〈(x := x+ 1;x′ = 1d ∪ x := x− 1)
∗〉 (0 ≤ x < 1)

Exercise 2. Can you find dGL formulas for which the winning region construction takes
even longer to terminate? How far can you push this?

Exercise 3. Carefully identify how determinacy relates to the two possible understand-
ings of the filibuster example discussed in an earlier lecture.

1The penultimate equation follows from the µ-calculus equivalence νZ.Υ(Z) ≡ ¬µZ.¬Υ(¬Z) and the
fact that least pre-fixpoints are fixpoints and that greatest post-fixpoints are fixpoints for monotone
functions.
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L22.14 Winning & Proving Hybrid Games

Exercise 4. Prove the elided cases of Lemma 3.

Exercise 5. Find the appropriate soundness notion for the axioms of dGL and prove that
the axioms are sound.

Exercise 6. Write down a valid formula that characterizes an interesting game between
two robots.
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