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1 Introduction

This lecture continues the study of temporal aspects of cyber-physical systems that Lec-
ture 5 on Differential & Temporal Logics started. The trace semantics of hybrid pro-
grams as well as the semantics of differential temporal dynamic logic (dTL) [Pla10], a
temporal extension of differential dynamic logic dL [Pla08, Pla12], have been discussed
in said lecture.

This lecture is based on [Pla10, Chapter 4], which extends [Pla07].

2 Temporal Proof Rules

When extending a logic, it is not enough to extend just the syntax (Lecture 5) and se-
mantics (Lecture 5). The proof rules also need to be extended to handle the new con-
cepts, that is the temporal modalities of dTL.

This section shows a sequent calculus for verifying temporal specifications of hybrid
systems in differential temporal dynamic logic dTL. With the basic idea being to per-
form a symbolic decomposition, the calculus transforms hybrid programs successively
into simpler logical formulas describing their effects. Statements about the temporal be-
haviour of a hybrid program are successively reduced to corresponding nontemporal
statements about the intermediate states. This lecture shows a proof calculus for dif-
ferential temporal dynamic logic dTL that inherits the proof rules of dL from previous
lectures and adds new proof rules for temporal modalities.

Inherited Nontemporal Rules The dTL calculus is presented in Fig. 1 and inherits the
(nontemporal) dL proof rules, i.e., the propositional, first-order, dynamic, and global
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L17.2 Differential & Temporal Proofs

rules from dL. That is, it includes the propositional and quantifier rules from Lecture 6.
The dynamic rules (〈;〉–[′]) and global rules ([]gen,〈〉gen,ind,con) for handling nontem-
poral dynamic modalities are also inherited directly from Lecture 6. The only possible
exception is that [∪],〈∪〉 can be generalised to apply to formulas of the form [α ∪ β]π
where π is an arbitrary trace formula, and not just a state formula as in dL. Thus, π may
begin with � or ♦, which is why the rules are repeated in this generalised form as [∪]�
and 〈∪〉♦ in Fig. 1.

Note 1.

([∪]�)
[α]π ∧ [β]π

[α ∪ β]π
1

([; ]�)
[α]�φ ∧ [α][β]�φ

[α;β]�φ

([?]�)
φ

[?χ]�φ

([:=]�)
φ ∧ [x := θ]φ

[x := θ]�φ

([′]�)
[x′ = θ]φ

[x′ = θ]�φ

([∗n]�)
[α;α∗]�φ
[α∗]�φ

([∗]�)
[α∗][α]�φ

[α∗]�φ

(〈∪〉♦)
〈α〉π ∨ 〈β〉π
〈α ∪ β〉π

1

(〈; 〉♦)
〈α〉♦φ ∨ 〈α〉〈β〉♦φ

〈α;β〉♦φ

(〈?〉♦)
φ

〈?χ〉♦φ

(〈:=〉♦)
φ ∨ 〈x := θ〉φ
〈x := θ〉♦φ

(〈′〉♦)
〈x′ = θ〉φ
〈x′ = θ〉♦φ

(〈∗n〉♦)
〈α;α∗〉♦φ
〈α∗〉♦φ

(〈∗〉♦)
〈α∗〉〈α〉♦φ
〈α∗〉♦φ

1π is a trace formula and—unlike the state formulas φ and ψ—may thus begin with a temporal
modality � or ♦.

Figure 1: Axiomatization of differential temporal dynamic logic dTL

Temporal Rules The new temporal rules in Fig. 1 for the dTL calculus successively
transform temporal specifications of hybrid programs into nontemporal dL formulas.
The idea underlying this transformation is to decompose hybrid programs and recur-
sively augment intermediate state transitions with appropriate specifications. Also see
Fig. 2 for an illustration of the correspondence of a representative set of proof rules for
temporal modalities to the trace semantics of hybrid programs (Def. ??).

Rule [; ]� decomposes invariants of α;β (i.e., [α;β]�φ holds) into an invariant of α
(i.e., [α]�φ) and an invariant of β that holds when β is started in any final state of α
(i.e., [α]([β]�φ)). Its difference with the dL rule [;] thus is that the dTL rule [; ]� also
checks safety invariant φ at the symbolic states in between the execution of α and β, and
recursively so because of the temporal modality �. Again, see Fig. 2 for an illustration
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Differential & Temporal Proofs L17.3

φ ∧ [x := θ]φ

[x := θ]�φ
ν ω

φ

[x := θ]φ

x := θ
φ

[x′ = θ]φ

[x′ = θ]�φ
ν ω

x′ = f(x)
ωs

φ

x′ = f(x) �φ

[α]�φ ∧ [α][β]�φ

[α;β]�φ

ν s ω

α;β �φ

α

�φ
[β]�φ

β

�φ

α;β ≡ α (if non-terminate)�φ

[α]�φ ∧ [β]�φ

[α ∪ β]�φ
ν

ω1

ω2

α
�φ

β �φ

α ∪ β

[α∗][α]�φ

[α∗]�φ
ν ω

α∗
�φ

α∗

α α

[α]�φ

α

�φ

Figure 2: Correspondence of temporal proof rules and trace semantics
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L17.4 Differential & Temporal Proofs

of this proof principle.
Rule [:=]� expresses that invariants of assignments need to hold before and after the

discrete change (similarly for [?]�, except that tests do not lead to a state change, so φ
holding before the test is all there is to it). Rule [′]� can directly reduce invariants of
continuous evolutions to nontemporal formulas as restrictions of solutions of differen-
tial equations are themselves solutions of different duration and thus already included
in the evolutions of x′ = θ. In particular, observe that the handling of differential equa-
tions within hybrid systems is fully encapsulated within the fragment of dynamic rules
from dL.

The (optional) iteration rule [∗n]� can partially unwind loops. It relies on rule [; ]� and
is simpler than dL rule [∗n], because the other rules will inductively produce a premise
that φ holds in the current state, because of the temporal modality �φ. The dual rules
〈∪〉♦,〈; 〉♦,〈?〉♦,〈:=〉♦,〈′〉♦,〈∗n〉♦ work similarly.

In dL (Lecture 7 on Control Loops & Invariants), the primary means for handling
loops are the invariant induction (ind) and variant convergence (con) rules. The logic
dTL takes a different, completely modular approach for verifying temporal properties
of loops based on the dL capabilities for verifying nontemporal properties of loops.
Rules [∗]� and 〈∗〉♦ actually define temporal properties of loops inductively. Rule [∗]� ex-
presses that φ holds at all times during repetitions of α (i.e., [α∗]�φ) iff, after repeating α
any number of times, φ holds at all times during one execution of α (i.e., [α∗]([α]�φ)).
See Fig. 2 for an illustration. Dually, 〈∗〉♦ expresses that α holds at some time during
repetitions of α (i.e., 〈α∗〉♦φ) iff, after some number of repetitions of α, formula φ holds
at some point during one execution of α (i.e., 〈α∗〉(〈α〉♦φ)). In this context, the non-
temporal modality 〈α∗〉 can be thought of as skipping over to the iteration of α during
which φ actually occurs, as expressed by the nested dTL formula 〈α〉♦φ. The inductive
definition rules [∗]� and 〈∗〉♦ completely reduce temporal properties of loops to dTL
properties of standard nontemporal dL-modalities such that standard induction (ind)
or convergence rules (con) can be used for the outer nontemporal modality of the loop.
Hence, after applying the inductive loop definition rules [∗]� and 〈∗〉♦, the standard dL
loop invariant and variant rules can be used for verifying temporal properties of loops
without change, except that the postcondition contains temporal modalities.

Rules for handling [α]♦φ and 〈α〉�φ are discussed in [Pla10].

3 Temporal Bouncing Ball

Recall the bouncing ball that has served us so well in previous lectures.

(v2 ≤ 2g(H − h) ∧ h ≥ 0 ∧ g > 0 ∧H ≥ 0 ∧ 1 > c ≥ 0)→ [ball](0 ≤ h ≤ H). (1)
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Differential & Temporal Proofs L17.5

Use the abbreviations

ball ≡ h′ = v, v′ = −g&h ≥ 0; (?h > 0 ∪ (?h = 0; v :=−cv))

ψ ≡ g > 0 ∧H ≥ 0 ∧ 1 > c ≥ 0,

ϕ ≡ v2 ≤ 2g(H − h) ∧ h ≥ 0

〈h := ..(t)〉F ≡ 〈h := h+ vt− g

2
t2; v := v − tg〉F.

When simplifying the ball dynamics to remove evolution domain constraints:

h′ = v, v′ = −g; (?h > 0 ∪ (?h = 0; v :=−cv))

the proof for the simplified bouncing ball property without evolution domain con-
straint is shown in Fig. 3. The dL proof for the original bouncing ball property (1) with
an evolution domain constraint is shown in Fig. 4.

4 Verification Example

Recall the bouncing ball. The proofs from previous lectures or Fig. 4 can be generalized
easily to a proof of the temporal property

v2 ≤ 2g(H − h) ∧ h ≥ 0 ∧ g > 0 ∧H ≥ 0 ∧ 1 > c ≥ 0

→ [(h′′ = −g&h ≥ 0; (?h > 0 ∪ (?h = 0; v :=−cv)))
∗
]�(0 ≤ h ≤ H). (2)

The only aspect of the proof that changes is that the temporal proof rules in Fig. 1 are
used instead of the dynamic proof rules for dL, and that the resulting extra proof goals
for the invariance property at intermediate steps have to be proven.

In contrast, the proof in Fig. 3 for the simplified dynamics without evolution domain
restriction h ≥ 0 cannot be generalized to a proof of the temporal property

v2 ≤ 2g(H − h) ∧ h ≥ 0 ∧ g > 0 ∧H ≥ 0 ∧ 1 > c ≥ 0

→ [(h′′ = −g; (?h > 0 ∪ (?h = 0; v :=−cv)))
∗
]�(0 ≤ h ≤ H). (3)

This difference in provability is for good reasons. The property in (2) is valid, but the
property in (3) is not! While there was no noticeable semantical difference between
the nontemporal dL counterparts of the properties (2) versus (3), there is a decisive
difference between the corresponding temporal properties (3) and (2). Because there is
no evolution domain restriction in (3), its hybrid program does not prevent continuous
evolution to a negative height under the floor (h < 0), for which 0 ≤ h ≤ H does not
hold.

The reason for this discrepancy of the temporal version compared to the nontemporal
versions thus is that the nontemporal modalities do not “see” the temporary violation
of 0 ≤ h ≤ H . Such a temporary violation of 0 ≤ h during the continuous evolution
does not produce a successful run of the hybrid program, because it is blocked by
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∗
i∀ ψ,ϕ, s≥0, h+ vs− g

2s
2 = 0 ` (−c(v − gs))2 ≤ 2g(H − (h+ vs− g

2s
2)) ∧ h+ vs− g

2s
2 ≥ 0

〈:=〉 ψ,ϕ, s≥0, 〈h := ..(s)〉h = 0 ` 〈h := ..(s)〉〈v :=−cv〉 ϕ
[:=] ψ,ϕ, s≥0, 〈h := ..(s)〉h = 0 ` 〈h := ..(s)〉[v :=−cv] ϕ
→r ψ,ϕ, s≥0 ` 〈h := ..(s)〉(h = 0→ [v :=−cv] ϕ)
[?] ψ,ϕ, s≥0 ` 〈h := ..(s)〉[?h = 0][v :=−cv] ϕ
[;] ψ,ϕ, s≥0 ` 〈h := ..(s)〉[?h = 0; v :=−cv] ϕ

∗
i∀ ψ,ϕ, s≥0, h+ vs− g

2s
2 > 0 ` (v − gs)2 ≤ 2g(H − (h+ vs− g

2s
2)) ∧ h+ vs− g

2s
2 ≥ 0

〈:=〉 ψ,ϕ, s≥0, 〈h := ..(s)〉h > 0 ` 〈h := ..(s)〉 ϕ
→r ψ,ϕ, s≥0 ` 〈h := ..(s)〉(h > 0→ ϕ)
[?] ψ,ϕ, s≥0 ` 〈h := ..(s)〉[?h > 0] ϕ

. . .

ψ, ϕ, s≥0 ` 〈h := ..(s)〉[?h > 0] ϕ

. . .

ψ, ϕ, s≥0 ` 〈h := ..(s)〉[?h = 0; v :=−cv] ϕ
∧r ψ,ϕ, s≥0 ` 〈h := ..(s)〉([?h > 0] ϕ ∧ [?h = 0; v :=−cv] ϕ)
[∪] ψ,ϕ, s≥0 ` 〈h := ..(s)〉[?h > 0 ∪ (?h = 0; v :=−cv)] ϕ
→r ψ,ϕ ` s≥0→ 〈h := ..(s)〉[?h > 0 ∪ (?h = 0; v :=−cv)] ϕ
∀r ψ,ϕ ` ∀t≥0 〈h := ..(t)〉[?h > 0 ∪ (?h = 0; v :=−cv)] ϕ
[′] ψ,ϕ ` [h′′ = −g][?h > 0 ∪ (?h = 0; v :=−cv)] ϕ
[;] ψ,ϕ ` [h′′ = −g; (?h > 0 ∪ (?h = 0; v :=−cv))] ϕ

ind′ ψ,ϕ ` [(h′′ = −g; (?h > 0 ∪ (?h = 0; v :=−cv)))∗](0≤h≤H)
→r,∧l ` ψ∧ϕ→ [(h′′ = −g; (?h > 0 ∪ (?h = 0; v :=−cv)))∗](0≤h≤H)

Figure 3: Bouncing ball proof (no evolution domain)
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∗
i∀ ψ ∧ ϕ, s≥0, , h+ vs− g

2s
2 = 0 ` (−c(v − gs))2 ≤ 2g(H − (h+ vs− g

2s
2)) ∧ h+ vs− g

2s
2 ≥ 0

〈:=〉 ψ ∧ ϕ, s≥0, , 〈h := ..(s)〉h = 0 ` 〈h := ..(s)〉〈v :=−cv〉 ϕ
[:=] ψ ∧ ϕ, s≥0, , 〈h := ..(s)〉h = 0 ` 〈h := ..(s)〉[v :=−cv] ϕ
→r ψ ∧ ϕ, s≥0, 〈h := ..(s)〉h ≥ 0 ` 〈h := ..(s)〉(h = 0→ [v :=−cv] ϕ)
[?] ψ ∧ ϕ, s≥0, 〈h := ..(s)〉h ≥ 0 ` 〈h := ..(s)〉[?h = 0][v :=−cv] ϕ
[;] ψ ∧ ϕ, s≥0, 〈h := ..(s)〉h ≥ 0 ` 〈h := ..(s)〉[?h = 0; v :=−cv] ϕ

∗
i∀ ψ ∧ ϕ, s≥0, , h+ vs− g

2s
2 > 0 ` (v − gs)2 ≤ 2g(H − (h+ vs− g

2s
2)) ∧ h+ vs− g

2s
2 ≥ 0

〈:=〉 ψ ∧ ϕ, s≥0, , 〈h := ..(s)〉h > 0 ` 〈h := ..(s)〉 ϕ
→r ψ ∧ ϕ, s≥0, 〈h := ..(s)〉h ≥ 0 ` 〈h := ..(s)〉(h > 0→ ϕ)
[?] ψ ∧ ϕ, s≥0, 〈h := ..(s)〉h ≥ 0 ` 〈h := ..(s)〉[?h > 0] ϕ

. . .

. . . ` 〈h := ..(s)〉[?h > 0] ϕ

. . .

ψ ∧ ϕ, s≥0, 〈h := ..(s)〉h ≥ 0 ` 〈h := ..(s)〉[?h = 0; v :=−cv] ϕ
∧r ψ ∧ ϕ, s≥0, 〈h := ..(s)〉h ≥ 0 ` 〈h := ..(s)〉([?h > 0] ϕ ∧ [?h = 0; v :=−cv] ϕ)
[∪] ψ ∧ ϕ, s≥0, 〈h := ..(s)〉h ≥ 0 ` 〈h := ..(s)〉[?h > 0 ∪ (?h = 0; v :=−cv)] ϕ
→r ψ ∧ ϕ, s≥0 ` 〈h := ..(s)〉h ≥ 0→ 〈h := ..(s)〉[?h > 0 ∪ (?h = 0; v :=−cv)] ϕ
→r ψ ∧ ϕ ` s≥0→ (〈h := ..(s)〉h ≥ 0→ 〈h := ..(s)〉[?h > 0 ∪ (?h = 0; v :=−cv)] ϕ)
∀r ψ ∧ ϕ ` ∀t≥0 (〈h := ..(t)〉h ≥ 0→ 〈h := ..(t)〉[?h > 0 ∪ (?h = 0; v :=−cv)] ϕ)
[′] ψ ∧ ϕ ` [h′′ = −g&h ≥ 0][?h > 0 ∪ (?h = 0; v :=−cv)] ϕ
[;] ψ ∧ ϕ ` [h′′ = −g&h ≥ 0; (?h > 0 ∪ (?h = 0; v :=−cv))] ϕ

ind′ ψ ∧ ϕ ` [(h′′ = −g&h ≥ 0; (?h > 0 ∪ (?h = 0; v :=−cv)))∗](0≤h≤H)
→r ` ψ ∧ ϕ→ [(h′′ = −g&h ≥ 0; (?h > 0 ∪ (?h = 0; v :=−cv)))∗](0≤h≤H)

Figure 4: Bouncing ball proof (with evolution domain)
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the subsequent tests ?h = 0 and ?h > 0. A state with negative height fails both tests.
While this behaviour does not give a successful program transition of (ν, ω) ∈ ρ(ball)
by Lecture 3 so that the proof in Fig. 3 is correct, the behaviour still gives a valid trace
σ ∈ τ(ball) by Def. ??. This trace σ is a partial trace, because it ends in a failure state
Λ, but it is still one of the traces that [ball]�(0 ≤ h ≤ H) quantifies over (quite unlike
[ball](0 ≤ h ≤ H), which only considers final states of successful traces).

5 Summary

This lecture showed a systematic way of specifying and verifying temporal properties
of hybrid systems. The focus was on safety properties that hold always throughout
the evolution of the system and are specified as [α]�φ with a mix of a temporal and
a dynamic modality instead of just a dynamic modality as in [α]φ. The difference is
that [α]�φ includes that safety condition φ holds at all intermediate states during all
traces of α, whereas [α]φ only specifies that φ holds at the end of each trace of α. This
difference matters in systems that have more intermediate states than final states. The
difference is insignificant for systems that can “stop anytime”, because those will al-
ready include all intermediate states of longer system runs as the final state of a corre-
sponding shorter system run. This has been the case in almost all systems studied in
this course and is frequently the case in practice.

The systematic way of ensuring safety always throughout the execution of hybrid
systems is the use of the dynamic and temporal modality [α]�φ, which works whether
or not the system has the special structure that allows it to stop anytime. In a nutshell,
the temporal proof rules for [α]�φ properties lead to additional branches that corre-
spond to the safety conditions at the respective intermediate state. It can be shown
that temporal dTL properties reduce to nontemporal dL properties completely [Pla10,
Chapter 4], justifying the intimate relation of temporal and nontemporal properties
That completeness result made crucial use of the clever form of the [∗]� proof rule.

Other temporal modalities are more complicated but can either be handled directly
(in the case of 〈α〉♦φ) or by transformation [Pla10].

Exercises

Exercise 1. Can you give a formula of the following form that is valid?

[α]�φ ∧ ¬[α]φ

Exercise 2. In which case does the temporal [α]�φ differ from the nontemporal [α]φ.

Exercise 3. Can you give a temporal box version of the differential invariant proof rule?
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http://symbolaris.com/course/fcps13/03-choicecontrol.pdf


Differential & Temporal Proofs L17.9

References
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