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André Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification October 23, 2013 1 / 16



ETCS Control Verification

Problem

Hybrid System

Continuous evolutions
(differential equations)

Discrete jumps
(control decisions)
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European Train Control System

m.eST SBτ.p

Objectives

1 Collision free

2 Maximise throughput &
velocity (300 km/h)

3 2.1 ∗ 106 passengers/day

Overview
1 No static partitioning of track

2 Radio Block Controller (RBC)
manages movement authorities
dynamically

3 Moving block principle
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Separation Principle

Lemma (Principle of separation by movement authorities)

Each train respects its movement authority and
the RBC partitions into disjoint movement authorities
⇒ trains can never collide.

m.eST SBτ.p

Proof.

To simplify notation, assume trains are points.

Consider any point in time ζ.

For n ∈ N, let z1, . . . , zn be positions of all the trains 1 to n at ζ.

Let Mi be the MA-range, i.e., the set of positions on the track for
which train i has currently been issued MA.

Suppose there was a collision at time ζ.

Then zi = zj at ζ for some i , j ∈ N.

However, by assumption, zi ∈ Mi and zj ∈ Mj at ζ, thus Mi ∩Mj 6= ∅,
This contradicts the assumption of disjoint MA.
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3D Movement Authorities

m.r

m1.e
m1.d m2.e

m2.d

m3.e

m3.d

τ.p

τ.v

Vectorial MA m = (d , e, r):

Beyond point m.e train not faster than m.d .

Train should try to keep recommended speed m.r
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Model/State Variables

Train τ ( )

τ.p Position

τ.v Speed

τ.a Acceleration

(t model time)

RBC + MA

m.e End of Authority

m.d Speed limit

m.r Recommended speed

rbc.message Channel

Parameters

SB Start Braking

b Braking power/deceleration

A Maximum acceleration

ε Maximum cycle time

André Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification October 23, 2013 6 / 16



Parametric Skeleton of ETCS
Read from the informal specification. . .
ETCSskel : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ 0)
atp : if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency) ∪ (m := ∗; ?m.r > 0)

Task

Verify safety

Specification

[ETCSskel](τ.p ≥ m.e → τ.v ≤ m.d)

Issue

Lots of counterexamples!
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Parametric Skeleton of ETCS
As transition system. . .

?τ.v ≤ m.r

?τ.v ≥ m.r

τ.a := ∗

τ.a := ∗

?− b ≤ τ.a ≤ A

?0 > τ.a ≥ −b

?(m.e − τ.p ≤ SB∨
rbc.message = emergency)

?m.e − τ.p ≥ SB∧
rbc.message 6= emergency)

τ.a := −b

t := 0

τ.p′ = τ.v ,
τ.v ′ = τ.a, t ′ = 1
τ.v ≥ 0 ∧ t ≤ ε

m0 := m m := ∗

rbc.message := emergency

Task

Verify safety

Specification

[ETCSskel](τ.p ≥ m.e → τ.v ≤ m.d)

Issue

Lots of counterexamples!
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Iterative Control Refinement Process

m.d τ.p

τ.v

m.e

SB

�

SB SB

Reaction time ε

1 Controllability discovery

2 Control refinement

3 Repeat 2 until safety can be proven

4 Liveness check
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ETCS Controllability

m.d τ.p

τ.v

m.e

τ.v2 −m.d2 ≤ 2b(m.e − τ.p)

Proposition (Controllability)

[τ.p′ = τ.v , τ.v ′ = −b ∧ τ.v ≥ 0](τ.p ≥ m.e → τ.v ≤ m.d)

≡ τ.v2 −m.d2 ≤ 2b(m.e − τ.p) (C)
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ETCS RBC Controllability

EOANEW EOANEW EOA NEW EOA

XX

Proposition (RBC Controllability)

m.d ≥ 0 ∧ b > 0→ [m0 := m; rbc]
(

m0.d
2 −m.d2 ≤ 2b(m.e −m0.e) ∧m0.d ≥ 0 ∧m.d ≥ 0↔

∀τ
(
(〈m := m0〉C)→ C

))
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ETCS Reactivity

m.d τ.p

τ.v

m.eSB

Reaction time ε

Proposition (Reactivity)(
∀m.e ∀τ.p

(
m.e − τ.p ≥ SB ∧ C → [τ.a := A; drive] C

))
≡ SB ≥ τ.v2 −m.d2

2b
+

(
A

b
+ 1

)(
A

2
ε2 + ε τ.v

)
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Refined ETCS Control

Necessary for safety

ETCSr: (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r ; τ.a := ∗; ?− b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r ; τ.a := ∗; ?0 > τ.a ≥ −b)

atp : SB := τ.v2−m.d2

2b +
(
A
b + 1

) (
A
2 ε

2 + ε τ.v
)
;

: if(m.e − τ.p ≤ SB ∨ rbc.message = emergency) τ.a := −b
drive : t := 0; (τ.p′ = τ.v , τ.v ′ = τ.a, t ′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency)

∪
(
m0 := m;m := ∗;

?m0.d
2 −m.d2 ≤ 2b(m.e −m0.e) ∧m.r ≥ 0 ∧m.d ≥ 0

)

Specification

τ.v2 −m.d2 ≤ 2b(m.e − τ.p)→ [ETCSr](τ.p ≥ m.e → τ.v ≤ m.d)
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ETCS Safety

EOA

EOA

Proposition (Safety)

C →
[ETCS](τ.p ≥ m.e → τ.v ≤ m.d)
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ETCS Liveness

EOA

NEW EOA

NEW EOA

Proposition (Liveness)

τ.v ≥ 0 ∧ ε > 0 → ∀P 〈ETCSr〉 τ.p ≥ P
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Safety Despite Disturbances

So far: no wind, friction, etc.
Direct control of the acceleration

Issue
This is unrealistic!

Solution Take disturbances into account.

Theorem

ETCS is controllable, reactive, and safe in the presence of disturbances.

Proof sketch

The system now contains τ.a− l ≤ τ.v ′ ≤ τ.a + u instead of τ.v ′ = τ.a.
; We cannot solve the differential equations anymore.

; Use differential invariants for approximation. For details see paper.

Platzer, A.:
Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. (2008) DOI 10.1093/logcom/exn070.
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André Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification October 23, 2013 15 / 16

10.1093/logcom/exn070


Safety Despite Disturbances

So far: no wind, friction, etc.
Direct control of the acceleration

Issue
This is unrealistic!

Solution Take disturbances into account.

Theorem

ETCS is controllable, reactive, and safe in the presence of disturbances.

Proof sketch

The system now contains τ.a− l ≤ τ.v ′ ≤ τ.a + u instead of τ.v ′ = τ.a.
; We cannot solve the differential equations anymore.

; Use differential invariants for approximation. For details see paper.

Platzer, A.:
Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. (2008) DOI 10.1093/logcom/exn070.
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Summary

m.eST SBτ.p

Formally verified a major case study with KeYmaera:

discovered necessary
safety constraints

controllability, reactivity,
safety and liveness
properties

Extensions for ETCS
with disturbances and
for ETCS with PI control
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