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1 Introduction

Lecture 5 on Dynamical Systems & Dynamic Axioms gave us a first simple proof princi-
ple for differential equations if we find a representable solution of the differential equa-
tion. The axiom [′] replaces properties of differential equations with suitably quantified
properties of solutions, with a universal quantifier over all durations of the solution.
Yet, that does not work for all differential equations, because only some of them have
explicit closed-form solutions let alone solutions that are simple enough to be quanti-
fied over without leaving the decidable parts of the resulting arithmetic.

Lecture 2 on Differential Equations & Domains allows many more differential equa-
tions to be part of CPS models than just the ones that happen to have simple solutions.
In fact, in a certain sense, most of the interesting differential equations do not possess
useful closed-form solutions. Today’s lecture reinvestigates the way we prove proper-
ties of differential equations from a much more fundamental perspective, which will
lead to a way of proving properties of CPS with more general differential equations.

More details can be found in [Pla10a, Pla10b, Chapter 3.5] and also [Pla12b]. Differ-
ential invariants were originally conceived in 2008 [Pla10a, Pla08] and later used for an
automatic proof procedure for hybrid systems [PC08].

2 Recall

Recall the following results from Lecture 10 on Differential Equations & Differential
Invariants:
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http://symbolaris.com/course/fcps13.html
http://symbolaris.com/andre.html
http://symbolaris.com/course/fcps13/05-dynax.pdf
http://symbolaris.com/course/fcps13/02-diffeq.pdf
http://symbolaris.com/course/fcps13/10-diffinv.pdf
http://symbolaris.com/course/fcps13/10-diffinv.pdf


L11.2 Differential Equations & Proofs

Definition 1 (Derivation). The operator (·)′ that is defined as follows on terms is
called syntactic (total) derivation:

(r)′ = 0 for numbers r ∈ Q (1a)
(x)′ = x′ for variable x ∈ Σ (1b)

(a+ b)′ = (a)′ + (b)′ (1c)
(a− b)′ = (a)′ − (b)′ (1d)
(a · b)′ = (a)′ · b+ a · (b)′ (1e)

(a/b)′ = ((a)′ · b− a · (b)′)/b2 (1f)

Definition 2 (Differentially augmented state in differential state flow). The value
of x′ at time ζ ∈ [0, r] of a differentiable function ϕ : [0, r]→ S of some duration
r ∈ R is defined as:

[[x′]]ϕ(ζ) =
dϕ(t)(x)

dt
(ζ)

Lemma 3 (Derivation lemma). Let ϕ : [0, r] → S be a differentiable function of dura-
tion r > 0. Then for all terms η that are defined all along ϕ and all times ζ ∈ [0, r]:

d [[η]]ϕ(t)

dt
(ζ) = [[(η)′]]ϕ(ζ)

where differential symbols are interpreted according to Def. 2. In particular, [[η]]ϕ(ζ) is
continuously differentiable.

Lemma 4 (Differential substitution property for terms). If ϕ : [0, r] → S solves the
differential equation x′ = θ, i.e. ϕ |= x′ = θ, then ϕ |= (η)′ = (η)′θx′ for all terms η, i.e.:

[[(η)′]]ϕ(ζ) = [[(η)′
θ
x′ ]]ϕ(ζ) for all ζ ∈ [0, r]

3 Differential Invariant Terms

Lecture 10 on Differential Equations & Differential Invariants proved soundness for
a proof rule for differential invariant terms, which can be used to prove normalized
invariant equations of the form η = 0.

15-424 LECTURE NOTES ANDRÉ PLATZER
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Differential Equations & Proofs L11.3

Lemma 5 (Differential invariant terms). The following special case of the differential
invariants proof rule is sound, i.e. if its premise is valid then so is its conclusion:

(DI=0)
` η′θx′ = 0

η = 0 ` [x′ = θ]η = 0

4 Proof by Generalization

So far, the argument captured in the differential invariant term proof rule DI=0 works
for

d2 + e2 − r2 = 0→ [d′ = e, e′ = −d]d2 + e2 − r2 = 0 (2)

with an equation d2 + e2 − r2 = 0 normalized to having 0 on the right-hand side but
not for the original formula

d2 + e2 = r2 → [d′ = e, e′ = −d]d2 + e2 = r2 (3)

because its postcondition is not of the form η = 0. Yet, the postcondition d2 + e2 −
r2 = 0 of (2) is trivially equivalent to the postcondition d2 + e2 = r2 of (3), just by
rewriting the polynomials on one side, which is a minor change. That is an indication,
that differential invariants can perhaps do more than what proof rule DI=0 already
knows about.

But before we pursue our discovery of what else differential invariants can do for us
any further, let us first understand a very important proof principle.

Note 6 (Proof by generalization). If you do not find a proof of a formula, it can sometimes
be easier to prove a more general property from which the one you were looking for follows.

This principle, which may at first appear paradoxical, turns out to be very helpful. In
fact, we have made ample use of Note 6 when proving properties of loops by induction.
The loop invariant that needs to be proved is usually more general than the particular
postcondition one is interested in. The desirable postcondition follows from having
proved a more general inductive invariant.

In its purest form, the principle of generalization is captured in the generalization rule
from Lecture 7 on Control Loops & Invariants. One of the forms of the generalization
rule is:

([]gen′)
Γ ` [α]φ,∆ φ ` ψ

Γ ` [α]ψ,∆

Instead of proving the desirable postcondition ψ of α (conclusion), proof rule []gen′

makes it possible to prove the postcondition φ instead (left premise) and prove that
φ is more general than the desired ψ (right premise). Generalization []gen′ can help
us prove the original dL formula (3) by first turning the postcondition into the form
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L11.4 Differential Equations & Proofs

of the (provable) (2) and adapting the precondition using a corresponding cut with
d2 + e2 − r2 = 0:

→r

[]gen′

cut,Wl,Wr

R
∗

d2 + e2 = r2 ` d2 + e2 − r2 = 0
DI=0

R
∗

` 2de+ 2e(−d)− 0 = 0

` (2dd′ + 2ee′ − 2rr′ = 0)ed′
−d
e′
−0
r′

d2 + e2 − r2 = 0 ` [d′ = e, e′ = −d]d2 + e2 − r2 = 0

d2 + e2 = r2 ` [d′ = e, e′ = −d]d2 + e2 − r2 = 0
R

∗
d2 + e2 − r2 = 0 ` d2 + e2 = r2

d2 + e2 = r2 ` [d′ = e, e′ = −d]d2 + e2 = r2

` d2 + e2 = r2 → [d′ = e, e′ = −d]d2 + e2 = r2

This is a possible way of proving the original (3), but also unnecessarily complicated.
Differential invariants can prove (3) directly once we generalize proof rule DI=0 ap-
propriately. For other purposes, however, it is still important to have the principle of
generalization Note 6 in our repertoire of proof techniques.

5 Equational Differential Invariants

There are more general logical formulas that we would like to prove to be invariants
of differential equations, not just the polynomial equations normalized such that they
are single terms equaling 0. Thinking back of the soundness proof for DI=0 in Lecture
10, the argument used involving the value of the left-hand side term h(t) = [[η]]ϕ(t) as
a function of time t. The same argument can be made by considering the difference
h(t) = [[θ − η]]ϕ(t) instead to prove postconditions of the form θ = η. How does the in-
ductive step for formula θ = η need to be define to make a corresponding differential
invariant proof rule sound? That is, for what premise is the following a sound proof
rule?

` ???

θ = η ` [x′ = θ]θ = η

Before you read on, see if you can find the answer for yourself.
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Differential Equations & Proofs L11.5

Defining the total derivative of an equation θ = η as

(θ = η)′ ≡ ((θ)′ = (η)′)

results in a sound proof rule by a simple variation of the soundness proof for DI=0 as
sketched above. The resulting proof rule

(DI=)
` (κ′ = η′)θx′

κ = η ` [x′ = θ]κ = η

for equational differential invariants captures the basic intuition that κ always stays
equal to η if it has been initially (antecedent of conclusion) and the derivative of κ is
the same as the derivative of η with respect to the differential equation x′ = θ. This
intuition is made precise by Lemma 3 and Lemma 4. Instead of going through a proper
soundness proof for DI=, however, let’s directly generalize the proof principles further
and see if differential invariants can prove even more formulas for us. We will later
prove soundness for the general differential invariant rule, from which DI= derives as
a special case.

Example 6 (Rotational dynamics). The rotational dynamics d′ = e, e′ = −d is compli-
cated in that the solution involves trigonometric functions, which are generally outside
decidable classes of arithmetic. Yet, we can easily prove interesting properties about
it using DI and decidable polynomial arithmetic. For instance, DI= can directly prove
formula (3), i.e. that d2 + e2 = r2 is a differential invariant of the dynamics, using the
following proof:

∗
R ` 2de+ 2e(−d) = 0

` (2dd′ + 2ee′ = 0)ed′
−d
e′

DId2 + e2 = r2 ` [d′ = e, e′ = −d]d2 + e2 = r2

→r ` d2 + e2 = r2 → [d′ = e, e′ = −d]d2 + e2 = r2

This proof is certainly much easier and more direct than the previous proof based on
[]gen′.

6 Differential Invariant Inequalities

The differential invariant proof rules considered so far give a good (initial) understand-
ing of how to prove equational invariants. What about inequalities? How can they be
proved?

Before you read on, see if you can find the answer for yourself.
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L11.6 Differential Equations & Proofs

The primary question is again how to define the total derivative

(θ ≤ η)′ ≡ ((θ)′ ≤ (η)′)

Example 7 (Cubic dynamics). Similarly, differential induction can easily prove that 1
3 ≤ 5x2

is an invariant of the cubic dynamics x′ = x3; see the proof in Fig. 7 for the dynamics
in Fig. 1. To apply the differential induction rule DI, we again form the total deriva-

∗
R ` 0 ≤ 5 · 2x(x3)

` (0 ≤ 5 · 2xx′)x
3

x′
DI1

3 ≤ 5x2 ` [x′ = x3]13 ≤ 5x2 0 t

x

x0
x′ = x3

Figure 1: a Cubic dynamics proof 1b: Cubic dynamics

tive of the differential invariant F ≡ 1
3 ≤ 5x2, which gives the differential expression

F ′ ≡ (13 ≤ 5x2)′ ≡ 0 ≤ 5 · 2xx′. Now, the differential induction rule DI takes into ac-
count that the derivative of state variable x along the dynamics is known. Substituting
the differential equation x′ = x3 into the inequality yields F ′x

3

x′ ≡ 0 ≤ 5 · 2xx3, which is
a valid formula and closes by quantifier elimination with R.

Differential invariants that are inequalities are not just a minor variation of equa-
tional differential invariants, because they can prove more. That is, it can be shown
[Pla12b] that there are valid formulas that can be proved using differential invariant
inequalities but cannot be proved just using equations as differential invariants (DI=).
So sometimes, you need to be prepared to look for inequalities that you can use as dif-
ferential invariants. The converse is not true. Everything that is provable using DI= is
also provable using differential invariant inequalities [Pla12b], but you should still look
for equational differential invariants if they give easier proofs.

Strict inequalities can also be used as differential invariants when defining their total
derivatives as:

(θ < η)′ ≡ ((θ)′ < (η)′)

It is easy to see (Exercise 1) that the following slightly relaxed definition would also be
sound:

(θ < η)′ ≡ ((θ)′ ≤ (η)′)

Understanding that differential substitution is sound for formulas, i.e. replacing the
left-hand side of the differential equation by its right-hand side, requires a few more
thoughts now, because the equational differential substitution principle Lemma 4 does
not apply directly. The differential substitution principle not only works for terms,
however, but also for differential first-order formulas, i.e. first-order formulas in which
differential symbols occur:
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Differential Equations & Proofs L11.7

Lemma 8 (Differential substitution property for differential formulas). Ifϕ : [0, r]→
S solves the differential equation x′ = θ, i.e. ϕ |= x′ = θ, then ϕ |= D ↔ Dθx′ for all dif-
ferential first-order formulas D, i.e. first-order formulas over Σ ∪ Σ′.

Proof. The proof is by using the Substitution Lemma [Pla10b, Lemma 2.2] for first-order
logic on the basis of [[x′]]ϕ(ζ) = [[θ]]ϕ(ζ) at each time ζ in the domain of ϕ by Def. 2.

By Lemma 8, differential equations can always be substituted in along their solutions.
Hence, the focus on developing differential invariant proof rules is in defining appro-
priate total derivatives, since Lemma 8 shows how to handle differential symbols by
substitution.

Where do differential first-order formulas come from? They come from the analogue
of the total derivation operator on formulas. On formulas, the total derivation operator
applies the total derivation operator from Def. 1 to all terms in a first-order formula,
yet it also flips disjunctions into conjunctions and existential quantifiers into universal
quantifiers.

7 Disequational Differential Invariants

The case that is missing in differential invariant proof rules are for postconditions that
are disequalities θ 6= η? How can they be proved?

Before you read on, see if you can find the answer for yourself.
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L11.8 Differential Equations & Proofs

By analogy to the previous cases, one might expect the following definition:

(θ 6= η)′
?≡ ((θ)′ 6= (η)′) ???

It is crucial for soundness of differential invariants tha (θ 6= η)′ is not defined that
way! In the following counterexample, variable x can reach x = 0 without its derivative
ever being 0; again, see Fig. 2 for the dynamics. Of course, just because θ and η start out

∗ (unsound)
` 1 6= 0

 x 6= 5 ` [x′ = 1]x 6= 5 0 t

x

x
′ = 1

x0 + t

Figure 2: a Unsound attempt of using disequalities 2b: Linear dynamics

different, does not mean they would always stay different if they evolve with different
derivatives.

Instead, if θ and η start out differently and evolve with the same derivatives, they
will always stay different. So the sound definition is slightly unexpected:

(θ 6= η)′ ≡ ((θ)′ = (η)′)

8 Conjunctive Differential Invariants

The next case to consider is where the invariant that we want to prove is a conjunction
F ∧G. Lemma 8 takes care of how to handle differential substitution for the differential
equations, if only we define the correct total derivative of (F ∧G)′.

Before you read on, see if you can find the answer for yourself.
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Differential Equations & Proofs L11.9

To show that a conjunction F ∧G is invariant it is perfectly sufficient to prove that
both are invariant. This can be justified separately, but is more obvious when recalling
the following equivalence from Lecture 7:

([]∧) [α](φ ∧ ψ)↔ [α]φ ∧ [α]ψ

which is valid for all hybrid programs α, also when α is just a differential equation.
Consequently, the total derivative of a conjunction is the conjunction of the total deriva-
tives (i.e. (·)′ is a homomorphism for ∧):

(F ∧G)′ ≡ (F )′ ∧ (G)′

Again, we will not develop a proper soundness argument, because it will follow from
the general differential invariant proof rule.

With a corresponding proof rule that enables us to do the following proof:

∗
R ` 2de+ 2e(−d) ≤ 0 ∧ 2de+ 2e(−d) ≥ 0

` (2dd′ + 2ee′ ≤ 0 ∧ 2dd′ + 2ee′ ≥ 0)ed′
−d
e′

DId2 + e2 ≤ r2 ∧ d2 + e2 ≥ r2 ` [d′ = e, e′ = −d](d2 + e2 ≤ r2 ∧ d2 + e2 ≥ r2)

Since the invariant d2 + e2 ≤ r2 ∧ d2 + e2 ≥ r2 is easily proved to be equivalent to d2 + e2 = r2,
the above proof gives yet another proof of (3) when combined with a corresponding use
of []gen′.

9 Disjunctive Differential Invariants

The next case to consider is where the invariant that we want to prove is a disjunction
F ∨G. Lemma 8 takes care of how to handle differential substitution for the differential
equations, if only we define the correct total derivative of (F ∨G)′. How?

Before you read on, see if you can find the answer for yourself.
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L11.10 Differential Equations & Proofs

The total derivative of a conjunction is the conjunction of the total derivatives. So,
by analogy, it might stand to reason to define the total derivative of a disjunction as the
disjunction of the total derivatives.

(F ∨G)′
?≡ (F )′ ∨ (G)′ ???

Let’s try it:

unsound
R ` 2de+ 2e(−d) = 0 ∨ 5d+ re ≥ 0

` (2dd′ + 2ee′ = 0 ∨ r′d+ rd′ ≥ 0)ed′
−d
e′

 d2 + e2 = r2 ∨ rd ≥ 0 ` [d′ = e, e′ = −d, r′ = 5](d2 + e2 = r2 ∨ rd ≥ 0)

That would be spectacularly wrong, however, because the formula at the bottom is not
actually valid. We have no business of proving formulas that are not valid and if we
ever could, we would have found a serious unsoundness in the proof rules.

For soundness of differential induction, it is crucial that Def. 1 defines the total deriva-
tive (F ∨G)′ of a disjunction conjunctively as (F )′ ∧ (G)′ instead of as (F )′ ∨ (G)′. From
an initial state ν which satisfies ν |= F , and hence ν |= F ∨G, the formula F ∨G only
is sustained differentially if F itself is a differential invariant, not if G is. For instance,
d2 + e2 = r2 ∨ rd ≥ 0 is no invariant of the above differential equation, because rd ≥ 0
will be invalidated if we just follow the circle dynamics long enough. So if the disjunc-
tion was true because rd ≥ 0 was true in the beginning, it does not stay invariant.

In practice, splitting differential induction proofs over disjunctions can be useful if a
direct proof with a single differential invariant does not succeed:

→r

∨l

[]gen′

DI
` A′θx′

A ` [x′ = θ]A
∨r

ax
∗

A ` A,B
A ` A ∨B

A ` [x′ = θ](A ∨B)
[]gen′

DI
` B′θx′

B ` [x′ = θ]B
∨r

ax
∗

B ` A,B
B ` A ∨B

B ` [x′ = θ](A ∨B)

A ∨B ` [x′ = θ](A ∨B)

` A ∨B → [x′ = θ](A ∨B)

10 Differential Invariants

Differential invariants are a general proof principles for proving invariants of formulas.
Summarizing what this lecture has discovered so far leads to a single proof rule for
differential invariants. That is why all previous proofs just indicated DI when using the
various special cases of the differential invariant proof rule to be developed next.

All previous arguments remain valid when the differential equation has an evolution
domain constraint H that it cannot leave by definition. In that case, the inductive proof
step can even assume the evolution domain constraint to hold, because the system, by
definition, is not allowed to leave it.
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Differential Equations & Proofs L11.11

Definition 9 (Derivation). The operator (·)′ that is defined as follows on first-order
real-arithmetic formulas is called syntactic (total) derivation:

(F ∧G)′ ≡ (F )′ ∧ (G)′ (4a)
(F ∨G)′ ≡ (F )′ ∧ (G)′ (4b)

(∀xF )′ ≡ ∀x (F )′ (4c)
(∃xF )′ ≡ ∀x (F )′ (4d)
(a ≥ b)′ ≡ (a)′ ≥ (b)′ accordingly for <,>,≤,=, but not 6= (4e)

Furthermore, F ′θx′ is defined to be the result of substituting θ for x′ in F ′. The
operation mapping F to (F )′θx′ is called Lie-derivative of F with respect to x′ = θ.

That is, to replace the left-hand side of a differential equation by the right-hand side.

Lemma 10 (Differential invariants). The differential invariant rule is sound:

(DI)
H ` F ′θx′

F ` [x′ = θ&H]F
(DI’)

Γ ` F,∆ H ` F ′θx′ F ` ψ
Γ ` [x′ = θ&H]ψ,∆

The version DI’ can be derived easily from the more fundamental, essential form DI.

The basic idea behind rule DI is that the premise of DI shows that the total deriva-
tive F ′ holds within evolution domain H when substituting the differential equations
x′ = θ into F ′. If F holds initially (antecedent of conclusion), then F itself always stays
true (succedent of conclusion). Intuitively, the premise gives a condition showing that,
within H , the total derivative F ′ along the differential constraints is pointing inwards
or transversally to F but never outwards to ¬F ; see Fig. 3 for an illustration. Hence,

¬ ¬FF F

Figure 3: Differential invariant F for safety

if we start in F and, as indicated by F ′, the local dynamics never points outside F ,
then the system always stays in F when following the dynamics. Observe that, unlike
F ′, the premise of DI is a well-formed formula, because all differential expressions are
replaced by non-differential terms when forming F ′θx′ .

Proof. Assume the premise F ′θx′ = 0 to be valid, i.e. true in all states. In order to prove
that the conclusion F ` [x′ = θ]F is valid, consider any state ν. Assume that ν |= F , as
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L11.12 Differential Equations & Proofs

there is otherwise nothing to show (sequent is trivially true since antecedent evaluates
to false). If ζ ∈ [0, r] is any time during any solution ϕ : [0, r]→ S of any duration r ∈ R
of x′ = θ beginning in initial state ϕ(0) = ν, then it remains to be shown that ϕ(r) |= F .
By antecedent, ν |= F , in the initial state ν = ϕ(0).

If the duration of ϕ is r = 0, we have ϕ(0) |= F immediately, because ν |= F . For
duration r > 0, we show that F holds all along ϕ, i.e., ϕ(ζ) |= F for all ζ ∈ [0, r].

We have to show that ν |= F → [x′ = θ&H]F for all states ν. Let ν satisfy ν |= F as,
otherwise, there is nothing to show. We can assume F to be in disjunctive normal form
and consider any disjunct G of F that is true at ν. In order to show that F remains
true during the continuous evolution, it is sufficient to show that each conjunct of G
is. We can assume these conjuncts to be of the form η ≥ 0 (or η > 0 where the proof
is accordingly). Finally, using vectorial notation, we write x′ = θ for the differential
equation system. Now let ϕ : [0, r]→ (V → R) be any solution of x′ = θ&H beginning
in ϕ(0) = ν. If the duration of ϕ is r = 0, we have ϕ(0) |= η ≥ 0 immediately, because
ν |= η ≥ 0. For duration r > 0, we show that η ≥ 0 holds all along the solution ϕ,
i.e., ϕ(ζ) |= η ≥ 0 for all ζ ∈ [0, r].

Suppose there was a ζ ∈ [0, r] with ϕ(ζ) |= η < 0, which will lead to a contradiction.
The function h : [0, r]→ R defined as h(t) = [[η]]ϕ(ζ) satisfies the relation h(0) ≥ 0 > h(ζ),
because h(0) = [[η]]ϕ(0) = [[η]]ν and ν |= η ≥ 0 by antecedent of the conclusion. By Lemma 3,
h is continuous on [0, r] and differentiable at every ξ ∈ (0, r). By mean value theorem,
there is a ξ ∈ (0, ζ) such that dh(t)

dt (ξ) · (ζ − 0) = h(ζ)− h(0) < 0. In particular, since ζ ≥
0, we can conclude that dh(t)

dt (ξ) < 0. Now Lemma 3 implies that dh(t)
dt (ξ) = [[(η)′]]ϕ(ξ) < 0.

This, however, is a contradiction, because the premise implies that the formulaH → (η ≥ 0)′

is true in all states along ϕ, including ϕ(ξ) |= H → (η ≥ 0)′. In particular, as ϕ is a solu-
tion for x′ = θ&H , we know that ϕ(ξ) |= H holds, and we have ϕ(ξ) |= (η ≥ 0)′, which
contradicts [[(η)′]] < 0.

This proof rule enables us to prove (2) easily in dL’s sequent calculus and all previous
proofs as well:

∗
R ` 2de+ 2e(−d) ≤ 0

` (2dd′ + 2ee′ ≤ 2rr′)ed′
−d
e′
−0
r′

DId2 + e2 ≤ r2 ` [d′ = e, e′ = −d]d2 + e2 ≤ r2
→r ` d2 + e2 ≤ r2 → [d′ = e, e′ = −d]d2 + e2 ≤ r2
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Differential Equations & Proofs L11.13

11 Example Proofs

Example 11 (Quartic dynamics). The following simple dL proof uses DI to prove an
invariant of a quartic dynamics.

∗
R a ≥ 0 ` 3x2((x− 3)4 + a) ≥ 0

a ≥ 0 ` (3x2x′ ≥ 0)
(x−3)4+a
x′

DIx3 ≥ −1 ` [x′ = (x− 3)4 + a& a ≥ 0]x3 ≥ −1

Observe that rule DI directly makes the evolution domain constraint a ≥ 0 available as
an assumption in the premise, because the continuous evolution is never allowed to
leave it.
Example 12. Consider the dynamics x′ = y, y′ = −ω2x− 2dωy of the damped oscillator
with the undamped angular frequency ω and the damping ratio d. See Fig. 4 for one
example of an evolution along this continuous dynamics. Figure 4 shows a trajectory

y

x

t

x

Figure 4: Trajectory and evolution of a damped oscillator

in the x, y space on the left, and an evolution of x over time t on the right. General
symbolic solutions of symbolic initial-value problems for this differential equation can
become surprisingly difficult. Mathematica, for instance, produces a long equation of
exponentials that spans 6 lines of terms just for one solution. A differential invariant
proof, instead, is very simple:

∗
R ω ≥ 0 ∧ d ≥ 0 ` 2ω2xy − 2ω2xy − 4dωy2 ≤ 0

ω ≥ 0 ∧ d ≥ 0 ` (2ω2xx′ + 2yy′ ≤ 0)
y
x′
−ω2x−2dωy
y′

DIω2x2 + y2 ≤ c2 ` [x′ = y, y′ = −ω2x− 2dωy& (ω ≥ 0 ∧ d ≥ 0)]ω2x2 + y2 ≤ c2

Observe that rule DI directly makes the evolution domain constraint ω ≥ 0 ∧ d ≥ 0
available as an assumption in the premise, because the continuous evolution is never
allowed to leave it.
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L11.14 Differential Equations & Proofs

12 Assuming Invariants

Let’s make the dynamics more interesting and see what happens. Suppose there is a
robot at a point with coordinates (x, y) that is facing in direction (d, e). Suppose the
robot moves with constant (linear) velocity into direction (d, e), which is rotating as
before. Then the corresponding dynamics is:

x′ = d, y′ = e, d′ = e, e′ = −d

because the derivative of the x coordinate is the component d of the direction and the
derivative of the y coordinate is the component e of the direction. If the rotation of
the direction (d, e) is faster or slower, the differential equation would be formed corre-
spondingly. Consider the following conjecture:

(x− 1)2 + (y − 2)2 ≥ p2 → [x′ = d, y′ = e, d′ = e, e′ = −d](x− 1)2 + (y − 2)2 ≥ p2 (5)

This conjecture expresses that the robot at position (x, y) will always stay at distance p
from the point (1, 2) if it started there. Let’s try to prove conjecture (5):

` 2(x− 1)d+ 2(y − 2)e ≥ 0

` (2(x− 1)x′ + 2(y − 2)y′ ≥ 0)dx′
e
y′

DI(x− 1)2 + (y − 2)2 ≥ p2 ` [x′ = d, y′ = e, d′ = e, e′ = −d](x− 1)2 + (y − 2)2 ≥ p2

Unfortunately, this differential invariant proof does not work. As a matter of fact, for-
tunately it does not work out, because conjecture (5) is not valid, so we will, fortunately,
not be able to prove it with a sound proof technique. Conjecture (5) is too optimistic.
Starting from some directions far far away, the robot will most certainly get too close to
the point (1,2). Other directions may be fine.

Inspecting the above failed proof attempt, we could prove (5) if we knew something
about the directions (d, e) that would make the remaining premise prove. What could
that be?

Before you read on, see if you can find the answer for yourself.
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Certainly, if we knew d = e = 0, the resulting premise would prove. Yet, that case
is pretty boring because it corresponds to the point (x, y) being stuck forever. A more
interesting case in which the premise would easily prove is if we knew x− 1 = −e and
y− 2 = d. In what sense could we “know” x− 1 = −e∧ y− 2 = d? Certainly, we would
have to assume this compatibility condition for directions versus position is true in the
initial state, otherwise we would not necessarily know the condition holds true where
we need it. So let’s modify (5) to include this assumption:

x− 1 = −e ∧ y − 2 = d ∧ (x− 1)2 + (y − 2)2 ≥ p2 →
[x′ = d, y′ = e, d′ = e, e′ = −d](x− 1)2 + (y − 2)2 ≥ p2 (6)

Yet, where we need to know x − 1 = −e ∧ y − 2 = d for the above sequent prove to
continue is in the middle of the inductive step. How could we make that happen?

Before you read on, see if you can find the answer for yourself.
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One step in the right direction is to convince ourselves that x− 1 = −e ∧ y − 2 = d is
a differential invariant of the dynamics, so it holds always if it held in the beginning:

∗
R ` d = −(−d) ∧ e = e

` (x′ = −e′ ∧ y′ = d′)dx′
e
y′
e
d′
−d
e′

DIx− 1 = −e ∧ y − 2 = d ` [x′ = d, y′ = e, d′ = e, e′ = −d](x− 1 = −e ∧ y − 2 = d)

This proves easily using differential invariants.
Now, how can this freshly proved invariant x− 1 = −e∧ y− 2 = d be made available

in the previous proof? Perhaps we could consider the conjunction of the invariant we
want with the invariant we need:

(x− 1)2 + (y − 2)2 ≥ p2 ∧ x− 1 = −e ∧ y − 2 = d

That does not work (eliding the antecedent in the conclusion just for space reasons)

` 2(x− 1)d+ 2(y − 2)e ≥ 0 ∧ d = −(−d) ∧ e = e

` (2(x− 1)x′ + 2(y − 2)y′ ≥ 0 ∧ x′ = −e′ ∧ y′ = d′)dx′
e
y′
e
d′
−d
e′

DIx− 1 = −e . . . ` [x′ = d, y′ = e, d′ = e, e′ = −d]((x− 1)2 + (y − 2)2 ≥ p2 ∧ x− 1 = −e ∧ y − 2 = d)

because the differential invariant proof rule DI does not make the invariant F available
in the antecedent of the premise.

In the case of loops, invariants can be assumed to hold before the loop body in the
induction step.

(ind)
F ` [α]F

F ` [α∗]F

By analogy, we could augment the differential invariant proof rule DI similarly to
include F in the assumptions. Is that a good idea?

Before you read on, see if you can find the answer for yourself.
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Differential Equations & Proofs L11.17

It looks tempting to suspect that rule DI could be improved by assuming the differ-
ential invariant F in the antecedent of the premise:

(DI??)
H ∧ F ` F ′θx′

F ` [x′ = θ&H]F
sound?

After all, we really only care about staying safe when we are still safe. But implicit
properties of differential equations are a subtle business. Assuming F like in rule DI??
would, in fact, be unsound, as the following simple counterexample shows, which
“proves” an invalid property using the unsound proof rule DI??:

∗ (unsound)

` −(x− y)2 ≥ 0→ −2(x− y)(1− y) ≥ 0

` −(x− y)2 ≥ 0→ (−2(x− y)(x′ − y′) ≥ 0)1x′
y
y′

 −(x− y)2 ≥ 0 ` [x′ = 1, y′ = y](−(x− y)2 ≥ 0)

Assuming an invariant of a differential equation during its own proof is, thus, in-
correct, even though it has been suggested numerous times in the literature. There
are some cases for which rule DI?? would be sound, but these are nontrivial [Pla10a,
Pla12b, Pla12a].

13 Differential Cuts

Instead, there is a complementary proof rule for differential cuts [Pla10a, Pla08, Pla12b,
Pla12a] that can be used to strengthen assumptions in a sound way:

(DC)
Γ ` [x′ = θ&H]C,∆ Γ ` [x′ = θ& (H ∧ C)]F ,∆

Γ ` [x′ = θ&H]F,∆

The differential cut rule works like a cut, but for differential equations. In the right
premise, rule DC restricts the system evolution to the subdomain H ∧ C of H , which
changes the system dynamics but is a pseudo-restriction, because the left premise proves
that C is an invariant anyhow (e.g. using rule DI). Note that rule DC is special in that
it changes the dynamics of the system (it adds a constraint to the system evolution do-
main region), but it is still sound, because this change does not reduce the reachable
set. The benefit of rule DC is that C will (soundly) be available as an extra assumption
for all subsequent DI uses on the right premise (see, e.g., the use of the evolution do-
main constraint in Example 12). In particular, the differential cut rule DC can be used
to strengthen the right premise with more and more auxiliary differential invariants C
that will be available as extra assumptions on the right premise, once they have been
proven to be differential invariants in the left premise.

Proving (6) in a sound way is now easy using a differential cut DC by x − 1 = −e ∧
y − 2 = d:
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∗
R ` d = −(−d) ∧ e = e

` (x′ = −e′ ∧ y′ = d′)
d
x′

e
y′

e
d′
−d
e′

DIx−1=.. ` [x′ = d, . . .](x−1=−e∧y−2=d)

∗
R x−1=−e ∧ y−2=d ` 2(x− 1)d+ 2(y − 2)e ≥ 0

x−1=−e ∧ y−2=d ` (2(x− 1)x′ + 2(y − 2)y′ ≥ 0)
d
x′

e
y′

DI(x−1)2+(y−2)2≥p2 ` [x′ = d, y′ = e, d′ = e, e′ = −d&x−1=−e∧y−2=d](x−1)2+(y−2)2≥p2
DC (x−1)2+(y−2)2≥p2∧x−1=−e∧y−2=d ` [x′ = d, y′ = e, d′ = e, e′ = −d](x− 1)2 + (y − 2)2 ≥ p2

Using this differential cut process repeatedly has turned out to be extremely useful
in practice and even simplifies the invariant search, because it leads to several simpler
properties to find and prove instead of a single complex property [PC08, PC09, Pla10b].

Proof of Soundness of DC. For simplicity, consider only the case where H ≡ true . Rule
DC is sound using the fact that the left premise implies that every solution ϕ that sat-
isfies x′ = θ also satisfies C all along the solution. Thus, if solution ϕ satisfies x′ = θ, it
also satisfies x′ = θ&C, so that the right premise entails the conclusion. The proof is
accordingly for the case

14 Differential Weakening

One simple but computable proof rule is differential weakening:

(DW)
H ` F

Γ ` [x′ = θ&H]F,∆

This rule is obviously sound, because the system x′ = θ&H , by definition, can never
leave H , hence, if H implies F (i.e. the region H is contained in the region F ), then F is
an invariant, no matter what x′ = θ does. Unfortunately, this simple proof rule cannot
prove very interesting properties, because it only works when H is very informative.
It can, however, be useful in combination with stronger proof rules (e.g., differential
cuts).

15 Summary

This lecture introduced very powerful proof rules for differential invariants, with which
you can prove even complicated properties of differential equations in easy ways. Just
like in the case of loops, where the search for invariants is nontrivial, differential invari-
ants also require some smarts (or good automatic procedures) to be found. Yet, once a
differential invariant has been identified, the proof follows easily.

Note 10 (Proof rules for differential equations).

(DI)
H ` F ′θx′

F ` [x′ = θ&H]F
(DW)

H ` F
Γ ` [x′ = θ&H]F,∆

(DC)
Γ ` [x′ = θ&H]C,∆ Γ ` [x′ = θ& (H ∧ C)]F ,∆

Γ ` [x′ = θ&H]F,∆

15-424 LECTURE NOTES ANDRÉ PLATZER
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Exercises

Exercise 1. We have chosen to define

(θ < η)′ ≡ ((θ)′ < (η)′)

Prove that the following slightly relaxed definition would also give a sound proof rule
for differential invariants:

(θ < η)′ ≡ ((θ)′ ≤ (η)′)

Exercise 2. We have defined

(θ 6= η)′ ≡ ((θ)′ = (η)′)

Suppose you remove this definition so that you can no longer use the differential in-
variant proof rule for formulas involving 6=. Can you derive a proof rule to prove such
differential invariants regardless? If so, how? If not, why not?
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