
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Proofs & Arithmetic

André Platzer

Carnegie Mellon University
Lecture 9

1 Introduction

Lecture 8 on Events & Delays discussed and developed two models for the ping pong
ball whose control was a ping pong paddle. First an event-driven controller and then a
time-triggered controller. Invariants have been identified in Lecture 8 but not proved.
This lecture will study proofs.

This lecture discusses:

• What is a proof?

• How does arithmetic happen in a proof?

• Arithmetic hiding to weaken arithmetic

• Instantiating arithmetic quantifiers to the extreme

• Updates as delayed substitutions/assignments

• Creative cuts for arithmetic

• Substituting equations

• If-then-else proofs

There are many more interesting things to be discussed about the mysteries of arith-
metic and how real arithmetic properties themselves can be proved [PQR09, Pla10,
Appendix D]. That is a topic for a later lecture, though. This lecture focuses on how
arithmetic interfaces with proofs.

15-424 LECTURE NOTES September 25, 2013 ANDRÉ PLATZER

http://symbolaris.com/course/fcps13.html
http://symbolaris.com/andre.html
http://symbolaris.com/course/fcps13/08-eventdelays.pdf
http://symbolaris.com/course/fcps13/08-eventdelays.pdf


L9.2 Proofs & Arithmetic

2 Proving Events in Control

0 ≤ h ≤ 5 ∧ v ≤ 0 ∧ 1 ≥ c ≥ 0 ∧ g > 0 ∧ f ≥ 0→[(
((h′ = v, v′ = −g&h ≥ 0 ∧ h ≤ 5) ∪ (h′ = v, v′ = −g&h ≥ 5));

if(h = 0) v :=−cv else if(4 ≤ h ≤ 5 ∧ v ≥ 0) v :=−fv
)∗]

(0 ≤ h ≤ 5)

(1)

Lecture 8 on Events & Delays identified the following invariant for this system:

5 ≥ h ≥ 0 ∧ (h = 5→ v ≤ 0)

This invariant is just strong enough to remember the control choice at the event h =
5 and that the possible range of h is safe. Recall that (global) invariants need to be
augmented with the usual assumptions about the unchanged variables, like c ≥ 0∧g >
0 ∧ f ≥ 0.

ϕ
def≡ 0 ≤ h ≤ 5 ∧ (h = 5→ v ≤ 0) ∧ 1 ≥ c ≥ 0 ∧ g > 0 ∧ f ≥ 0

Let’s use some (slightly awkward) abbreviations to keep proofs onto one page.

Ah,v
def≡ 2h = 2H − v2 ∧ 0 ≤ h ∧ h ≤ 5 ∧ v ≤ 0 ∧ g = 1 ∧ 1 = c ∧ 1 = f

Bh,v
def≡ 0 ≤ h ∧ h ≤ H

h′′=..≤5
def≡ (h′ = v, v′ = −g&h ≥ 0 ∧ h ≤ 5)

h′′=..≥5
def≡ (h′ = v, v′ = −g&h ≥ 5)

if(h=0) ..
def≡ if(h = 0) v :=−cv else

if(4, h≤5) ..
def≡ if(4 ≤ h ≤ 5 ∧ v ≥ 0) v :=−fv

With these abbreviations, the event-driven ping pong ball formula (1) turns into:

Ah,v → [
(
(h′′=..≤5 ∪ h′′=..≥5); if(h=0) ..if(4, h≤5) ..

)∗
]Bh,v

Let’s set out to prove (1) by converting it into a sequent and applying dL proof rules:

ind′

∧l,∧r,ax
∗

Ah,v ` ϕ
ϕ ` [(h′′=..≤5 ∪ h′′=..≥5); if(h=0) ..if(4, h≤5) ..]ϕ ∧l,∧r,ax

∗
ϕ ` Bh,v

→r
Ah,v ` [

(
(h′′=..≤5 ∪ h′′=..≥5); if(h=0) ..if(4, h≤5) ..

)∗
]Bh,v

` Ah,v → [
(
(h′′=..≤5 ∪ h′′=..≥5); if(h=0) ..if(4, h≤5) ..

)∗
]Bh,v

The left premise (initial case) and the right premise (use case) prove directly by split-
ting the conjunctions with ∧l,∧r and then closing by axiom ax. The middle premise
(inductive step for preserving the invariant) requires more work:

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/08-eventdelays.pdf


Proofs & Arithmetic L9.3

...
ϕ ` [h′′=..≤5][if(h=0) ..if(4, h≤5) ..]ϕ

...
ϕ ` [h′′=..≥5][if(h=0) ..if(4, h≤5) ..]ϕ

[∪]r ϕ ` [h′′=..≤5 ∪ h′′=..≥5][if(h=0) ..if(4, h≤5) ..]ϕ
[;]r ϕ ` [(h′′=..≤5 ∪ h′′=..≥5); if(h=0) ..if(4, h≤5) ..]ϕ

The right premise will be considered later. The left premise needs the solution of the
differential equation

h := ..(t)
def≡ (h := h− g

2
t2 − vt; v := v − gt) (2)

The left premise continues as follows:

[′]r

∀r

→r

→r

∀l
ϕ, t≥0, 0≤t≤t→ [h := ..(s)](h ≥ 0 ∧ h ≤ 5) ` [h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ

ϕ, t≥0, ∀0≤s≤t [h := ..(s)](h ≥ 0 ∧ h ≤ 5) ` [h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ

ϕ, t≥0 ` ∀0≤s≤t [h := ..(s)](h ≥ 0 ∧ h ≤ 5)→ [h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ

ϕ ` t≥0→
(
∀0≤s≤t [h := ..(s)](h ≥ 0 ∧ h ≤ 5)→ [h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ

)
ϕ ` ∀t≥0

(
∀0≤s≤t [h := ..(s)](h ≥ 0 ∧ h ≤ 5)→ [h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ

)
ϕ ` [h′′=..≤5][if(h=0) ..if(4, h≤5) ..]ϕ

The top-most step instantiates the universal quantifier ∀s in the antecedent by a smart
choice. That formula in the antecedent expresses that the evolution domain h ≥ 0 ∧ h ≤ 5
holds at all times s between 0 and the duration t of the continuous evolution. That may
very well be true, but what our thinking actually only depends on is that the evolution
domain still holds at the end time, t of the continuous evolution. The fact that the evo-
lution domain was also true before is not so crucial for our argument here, so we simply
instantiate the universally quantifier variable s in the antecedent by the time endpoint
t using rule ∀l.

15-424 LECTURE NOTES ANDRÉ PLATZER



L9.4 Proofs & Arithmetic

Note 1 (Extreme instantiation). The proof rule ∀l for universal quantifiers in the an-
tecedent as well as the rule ∃r for existential quantifiers in the succedent allow instantiation
of the quantified variable x with any term θ.

(∀l)
Γ, φ(θ),∀xφ(x) ` ∆

Γ,∀xφ(x) ` ∆
a

The way this rule is used in KeYmaera is with a direct use of weakening rule Wl to hide
the quantified formula:

(∀l)
Γ, φ(θ) ` ∆

Γ,∀xφ(x) ` ∆
b

This instantiation is very helpful if only a single instance θ is important for the argu-
ment. Often, an extremal value for x is all it takes for the proof.

This happens often for quantifiers coming from the handling of evolution domains in
proof rule [′]r. The proof steps that often help then is instantiation of intermediate time s
by the end time t:

∗
Γ, t≥0 ` 0≤t≤t, [x := y(t)]φ

. . .
Γ, t≥0, [x := y(t)]H ` [x := y(t)]φ

→lΓ, t≥0, 0≤t≤t→ [x := y(t)]H ` [x := y(t)]φ
∀l Γ, t≥0,∀0≤s≤t [x := y(s)]H ` [x := y(t)]φ
→r Γ, t≥0 ` (∀0≤s≤t [x := y(s)]H)→ [x := y(t)]φ
→r Γ ` t≥0→

(
(∀0≤s≤t [x := y(s)]H)→ [x := y(t)]φ

)
∀r Γ ` ∀t≥0

(
(∀0≤s≤t [x := y(s)]H)→ [x := y(t)]φ

)
Similar instantiations can simplify arithmetic in other cases as well.

aθ is an arbitrary term, often a new (existential) logical variable X .
bθ is an arbitrary term, often a new (existential) logical variable X .

Continuing the above proof as explained in Note 1 recalls that h := ..(t) abbreviates
the solution (2) and leads to:

ϕ, t≥0, h− g
2 t

2 − vt ≥ 0, h− g
2 t

2 − vt ≤ 5 ` [h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ
∧l ϕ, t≥0, h− g

2 t
2 − vt ≥ 0 ∧ h− g

2 t
2 − vt ≤ 5 ` [h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ

[:=]l ϕ, t≥0, [h := ..(s)](h ≥ 0 ∧ h ≤ 5) ` [h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ
ϕ, t≥0, 0≤t≤t→ [h := ..(s)](h ≥ 0 ∧ h ≤ 5) ` [h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ

This formula has gotten a bit lengthy, so abbreviate1 h − g
2 t

2 − vt by ĥ and abbreviate
v − gt by v̂. Hence,

h := ..(t) ≡ (h := ĥ; v := v̂)

But there also is a problem that we have not noticed before. Which proof rule do we
apply next? Sequent proof rules insist on being applied only to formulas on the top
level of the sequent, i.e. directly as a formula of the antecedent or directly to a formula

1Abbreviating long terms or long formulas by short names can help simplify KeYmaera proofs as well.

15-424 LECTURE NOTES ANDRÉ PLATZER



Proofs & Arithmetic L9.5

in the succedent. Except for splitting conjunctions in ϕ by ∧l, the only other formula
to apply a proof rule to is the single formula in the succedent, which has a [·] modality
with an assignment as the top-level operator. Thus, the only proof rule that applies is
[:=]r. Rule [:=]r substitutes the right-hand side θ of an assignment for the variable x
assigned to.

([:=])
φθx

[x := θ]φ

For simple arithmetic and propositional formulas, it is obvious what such a substitution
does. It just replaces x by θ everywhere in the scope of the substitution. That is exactly
what we have done with h := ĥ when using rule [:=]l in the antecedent in the above
proof.

Yet, the above formula

[h := ..(t)][if(h=0) ..if(4, h≤5) ..]ϕ

in the succedent has a postcondition [if(h=0) ..if(4, h≤5) ..]ϕ with a modality. It is
not necessarily entirely obvious how to substitute ĥ for h in such a modality which
involves a HP. In this particular case, we could actually perform such a substitution
without much difficulty.

Even though such substitutions can be defined [Pla10, Chapter 2.5.1] with a little bit
of care, we usually stay away from using them.2

2KeYmaera would even need to be persuaded to use these substitutions on HPs at all by setting the
advanced option update modalities.

15-424 LECTURE NOTES ANDRÉ PLATZER



L9.6 Proofs & Arithmetic

Note 2 (Excursion: Updates). For that reason, KeYmaera simply postpones the substitu-
tion resulting from an assignment according to rule [:=]r,[:=]l,〈:=〉r,〈:=〉l if the postcon-
dition is not a first-order formula but involves modalities with HPs. What this corresponds
to is, essentially to leave the assignment as is and apply proof rules to the postcondition,
but only in this particular case of assignments! Because that would be a bit confusing
without further notice, KeYmaera changes the notation slightly and turns an assignment
into what it calls an update.

(R4)
{x := θ}φ
[x := θ]φ

(R5)
φθx

{x := θ}φ

The meaning of the formula {x := θ}φ in the premise of R4 is exactly the same as the
formula [x := θ]φ in the conclusion of R4. The notation {x := θ}φ is only meant as a
reminder for the user that KeYmaera decided to put the handling of the assignment by
substitution on hold until the postcondition φ looks more civilized (meaning: first-order).
KeYmaera collects all the state changes in such an update (or a list of updates). KeYmaera
will then, essentially, just carry the {x := θ} around with it and apply the sequent proof
rules directly to postcondition φ until the substitution can be applied (R5) which will make
the update disappear again. Thus, KeYmaera splits the assignment rule [:=] into two parts:
R4 followed by R5.

More information on updates can be found in [Pla08, Pla10, Chapter 2.2,2.3,2.5].

Recall that we use the abbreviated notation ĥ and v̂ and, hence h := ..(t) is just h :=
ĥ; v := v̂.

After using rule R4 to changing the assignment notation into an update notation (re-
member that this only changes notation because both are equivalent) the above sequent
reads

ϕ, t≥0, ĥ ≥ 0, ĥ ≤ 5 ` {h := ĥ; v := v̂}[if(h=0) ..if(4, h≤5) ..]ϕ (3)

Before proceeding with any proof, we need to figure out what to do with the if-then-else
statements. Before doing any proofs, previous lectures, replaced if-then-else state-
ments by other hybrid program statements, which is always possible. In this lecture,
we decide differently and develop a direct proof rule for if-then-else.

(〈if〉)
(H → 〈α〉φ) ∧ (¬H → 〈β〉φ)

〈if(H)α elseβ〉φ
([if])

(H → [α]φ) ∧ (¬H → [β]φ)

[if(H)α elseβ]φ

When following up on a use of the [if] rule in the succedent of a sequent (call the
corresponding sequent rule [if]r) with propositional rules ∧r,→r, the sequent splits into
two cases as expected:3

3These propositional steps following the [if]r rule are so useful that KeYmaera does them for you right
away. In fact, KeYmaera even jumps from the formula at the bottom directly to the two premises.

15-424 LECTURE NOTES ANDRÉ PLATZER



Proofs & Arithmetic L9.7

Γ, H ` [α]φ
→r Γ ` H → [α]φ

Γ,¬H ` [β]φ
→r Γ ` ¬H → [β]φ

∧r Γ ` (H → [α]φ) ∧ (¬H → [β]φ)
[if]r Γ ` [if(H)α elseβ]φ,∆

Indeed, the conjecture at the bottom says that we want to show that all behavior of
a system whose behavior branches by an if-then-else is safe (satisfies φ). We do
not know which state we are in, except that we get to assume it satisfies Γ (and the
negation of ∆ by the sequent semantics). So there are usually many possible states.
Hence, there is generally no way of knowing whether if-condition H evaluates to true
or false . Hence, we need to consider both options. IfH evaluates to true , then α runs, so
all α behavior needs to be shown to be safe in that case (left premise). If H evaluates to
false , then β runs instead, so all β behavior needs to be shown to be safe (right premise).

Applying the [if]r rule two times to the sequent (3) yields 3 premises corresponding
to the 3 possible outcomes of the if-then-else statements (Exercise 1):

ϕ, t≥0, ĥ ≥ 0, ĥ ≤ 5, ĥ = 0 ` {h := ĥ; v := v̂}[v :=−cv]ϕ

ϕ, t≥0, ĥ ≥ 0, ĥ ≤ 5, ĥ 6= 0, 4 ≤ ĥ ≤ 5 ∧ v̂ ≥ 0 ` {h := ĥ; v := v̂}[v :=−fv]ϕ

ϕ, t≥0, ĥ ≥ 0, ĥ ≤ 5, ĥ 6= 0,¬(4 ≤ ĥ ≤ 5 ∧ v̂ ≥ 0) ` {h := ĥ; v := v̂}ϕ

(4)

Let’s address the three branches separately. The first branch of (4) turns into the follow-
ing using either [:=]r or R4 via R5:

ϕ, t≥0, ĥ ≥ 0, ĥ ≤ 5, ĥ = 0 ` {h := ĥ; v :=−cv̂}ϕ

which gives the following by applying the update using R5 (can also be obtained di-
rectly by [:=]r):

ϕ, t≥0, ĥ ≥ 0, ĥ ≤ 5, ĥ = 0 ` 0 ≤ ĥ ≤ 5 ∧ (ĥ = 5→ −cv̂ ≤ 0) ∧ 1 ≥ c ≥ 0 ∧ g > 0 ∧ f ≥ 0

That proves by arithmetic, because ĥ = 0 and implies 0 ≤ ĥ ≤ 5 and ĥ 6= 5 and the
other parts prove similarly.4

The second branch of (4) turns by either [:=] or via R4 and R5 into:

ϕ, t≥0, ĥ ≥ 0, ĥ ≤ 5, ĥ 6= 0, 4 ≤ ĥ ≤ 5 ∧ v̂ ≥ 0 ` {h := ĥ; v :=−fv̂}ϕ

which R5 turns into

ϕ, t≥0, ĥ ≥ 0, ĥ ≤ 5, ĥ 6= 0, 4 ≤ ĥ ≤ 5 ∧ v̂ ≥ 0 ` 0 ≤ ĥ ≤ 5 ∧ (ĥ = 5→ −fv̂ ≤ 0) ∧ 1 ≥ c ≥ 0 ∧ g > 0 ∧ f ≥ 0

which proves by arithmetic using that f ≥ 0 and v̂ ≥ 0 as well as the fact that 4 ≤ ĥ ≤ 5
trivially implies 0 ≤ ĥ ≤ 5, which is obvious thanks to the abbreviations.

The third branch of (4) turns with [:=]r or R5 into:

ϕ, t≥0, ĥ ≥ 0, ĥ ≤ 5, ĥ 6= 0,¬(4 ≤ ĥ ≤ 5 ∧ v̂ ≥ 0) ` 0 ≤ ĥ ≤ 5 ∧ (ĥ = 5→ v̂ ≤ 0) ∧ 1 ≥ c ≥ 0 ∧ g > 0 ∧ f ≥ 0

4Note how abbreviations simplify this proof step compared to what would have happened when ex-
panding ĥ.

15-424 LECTURE NOTES ANDRÉ PLATZER



L9.8 Proofs & Arithmetic

which a combination of propositional rules and/or arithmetic proves (Exercise!)
All this reasoning was for just the branch of the proof that came from the dynamics

h′′=..≤5. There is a second branch with the dynamics h′′=..≥5. In that one, the proof
is quite similar, except that it makes crucial use of the conjunct h = 5 → v ≤ 0 of the
invariant ϕ. Without that condition available as an assumption from the invariant ϕ,
the upper physics h′′=..≥5 would obviously violate the safety condition 0 ≤ h ≤ 5 if
the velocity at h = 5 were positive v > 0.

Stepping back, it is crucial to observe this general phenomenon. We have to be able
to assume the turning-point part h = 5 → v ≤ 0 of invariant ϕ for the proof of the
upper dynamics h′′=..≥5. But we also need to prove that this turning-point invariant
h = 5 → v ≤ 0 holds along with the rest of the invariant ϕ after all runs of the lower
physics h′′=..≤5. That is, this part of the invariant ϕ transports knowledge about the
behavior of the controller in the lower physics h′′=..≤5 to be used in the proof parts
about the upper physics h′′=..≥5.

Note 3 (Invariants transport knowledge). Invariants can be used to gather knowledge
about the individual bits and pieces of a system and make them accessible to the other parts.

15-424 LECTURE NOTES ANDRÉ PLATZER



Proofs & Arithmetic L9.9

3 Proving Systems with Delays in Control

2h = 2H − v2 ∧ 0 ≤ h ∧ h ≤ 5 ∧ v ≤ 0 ∧ g = 1 > 0 ∧ 1 = c ≥ 0 ∧ 1 = f > 0→[(
if(h = 0) v :=−cv; if((h > 5

1

2
− v ∨ 2h > 2 · 5− v2 ∧ v < 1) ∧ v ≥ 0) v :=−fv;

t := 0;h′ = v, v′ = −g, t′ = 1 &h ≥ 0 ∧ t ≤ 1
)∗]

(0 ≤ h ≤ 5)

(5)

Lecture 8 on Events & Delays identified the following invariant for this system:

2h = 2H − v2 ∧ h ≥ 0 ∧ h ≤ 5 (6)

although there was no proof yet. Recall that (global) invariants need to be augmented
with the usual assumptions about the unchanged variables, like g = 1 ∧ 1 = c ∧ 1 = f .
So let’s define the formula we conjecture to be an invariant as:

ϕ
def≡ 2h = 2H − v2 ∧ h ≥ 0 ∧ h ≤ 5 ∧ g = 1 ∧ 1 = c ∧ 1 = f

With this invariant, (5) is provable in KeYmaera.

4 Cutting Real Arithmetic

The cut rule from Lecture 6 on Truth & Proof is not just a curiosity, but can be very
helpful in practice. It can speed up real arithmetic a lot when using a cut to replace a
difficult arithmetic formula by a simpler one that is sufficient for the proof.

For example, suppose ψ(x) is a very complicated formula of first-order real arith-
metic. Then proving the following formula

(x− y)2 ≤ 0 ∧ ψ(x)→ ψ(y)

by just real arithmetic will turn out to be surprisingly difficult and can take ages. Yet,
thinking about it, (x − y)2 ≤ 0 implies that y = x, which should make the rest of the
proof easy since, ψ(x) should easily imply ψ(y) if y = x. How do we exhibit a proof
based on these thoughts?

The critical idea to make such a proof work is to use cut for a creative cut with the
suitable arithmetic. So we choose y = x as the cut formula φ in cut and proceed as
follows:

(x− y)2 ≤ 0 ` y = x
Wr (x− y)2 ≤ 0 ` y = x, ψ(y)
Wl(x− y)2 ≤ 0, ψ(x) ` y = x, ψ(y)

∗
ax ψ(x), y = x ` ψ(x)
=r ψ(x), y = x ` ψ(y)
Wl(x− y)2 ≤ 0, ψ(x), y = x ` ψ(y)

cut (x− y)2 ≤ 0, ψ(x) ` ψ(y)
∧l (x− y)2 ≤ 0 ∧ ψ(x) ` ψ(y)
→r ` (x− y)2 ≤ 0 ∧ ψ(x)→ ψ(y)

Indeed, the left premise proves easily using real arithmetic. The right premise proves
comparably easily as well. This proof uses proof rule =r that we discuss next.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/08-eventdelays.pdf
http://symbolaris.com/course/fcps13/06-truth.pdf


L9.10 Proofs & Arithmetic

5 Applying Equations by Substitution

The above cut proof uses the following proof rule for applying an equation to a formula
φ by substituting the left-hand side x of an equation by its right-hand side θ. This
substitution is sound, because x is assumed to be equal to θ in the antecedent. The
same rule works applies to formulas φ that are in the antecedent (=l) as well as in the
succedent (=r). Obviously, the assumed equality x = θ has to be in the antecedent for
the rule to be sound.

(=r)
Γ, x = θ ` φθx,∆
Γ, x = θ ` φ,∆

(=l)
Γ, x = θ, φθx ` ∆

Γ, x = θ, φ ` ∆

It would be okay to use the equation in the other direction for replacing all occur-
rences of θ by x, because the equation θ = x is equivalent to x = θ.

Exercises

Exercise 1. Explicitly complete the proof steps that lead from (3) to the 3 branches iden-
tified in the lecture notes by writing a proper sequent derivation. Recall how updates
are delayed substitutions and that they “hang around” until they can be applied.

Exercise 2. The sequent proof shown in these lecture notes is for the case coming from
the lower dynamics h′′=..≤5. This alone does not prove (1). Write a sequent proof for
the missing branches coming from the upper dynamics h′′=..≥5.

Exercise 3. Develop a sequent proof for the time-triggered ping pong ball (5). Is it easier
or more difficult than the proof for (1)?

Exercise 4. Relate the event-driven system proof for (1) discussed in lecture to the proof
that KeYmaera produces. What do they have in common? Where do they differ?

References

[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.

[Pla10] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg, 2010. doi:10.1007/978-3-642-14509-4.

[PQR09] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real world verifi-
cation. In Renate A. Schmidt, editor, CADE, volume 5663 of LNCS, pages
485–501. Springer, 2009. doi:10.1007/978-3-642-02959-2_35.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-02959-2_35

	Introduction
	Proving Events in Control
	Proving Systems with Delays in Control
	Cutting Real Arithmetic
	Applying Equations by Substitution

