
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Safety & Contracts

André Platzer

Carnegie Mellon University
Lecture 4

1 Introduction

In the previous lectures, we have studied models of cyber-physical systems. Hybrid
programs provide a programming language for cyber-physical systems with the most
prominent features being differential equations and nondeterminism alongside the usual
classical control structures and discrete assignments. This gives powerful and flexible
ways of modeling even very challenging systems and very complex control principles.
This lecture will start studying ways of making sure that the resulting behavior meets
the required correctness standards.

In 15-122 Principles of Imperative Computation, you have experienced how contracts
can be used to make properties of programs explicit. You have seen how contracts can
be checked dynamically at runtime, which, if they fail, alert you right away to flaws in
the design of the programs. You have experienced first hand that it is much easier to
find and fix problems in programs starting from the first contract that failed in the mid-
dle of the program, rather than from the mere observation that the final output is not as
expected (which you may not notice either unless the output is checked dynamically).

Another aspect of contracts that you have had the opportunity to observe in Princi-
ples of Imperative Computation is that they can be used in proofs that show that every
program run will satisfy the contracts. Unlike in dynamic checking, the scope of cor-
rectness arguments with proofs extends beyond the (clever) test cases that have been
tried. Both uses of contracts, dynamic checking and rigorous proofs, are very helpful
to check whether a system does what we intend it to, as has been argued on numerous
occasions in various contexts in the literature, e.g., [Flo67, Hoa69, Pra76, Mey92, XJC09,
PCL11, Log11].

The principles of contracts help cyber-physical systems [Pla08, Pla10, Pla13, DLTT13]
as well. Yet, their use in proving may, arguably, be more important than their use in dy-

15-424 LECTURE NOTES September 9, 2013 ANDRÉ PLATZER

http://symbolaris.com/course/fcps13.html
http://symbolaris.com/andre.html
http://c0.typesafety.net
http://c0.typesafety.net
http://c0.typesafety.net

L4.2 Safety & Contracts

namic checking. The reason has to do with the physical impact of CPS and the (relative)
non-negotiability of the laws of physics. The reader is advised to imagine a situation
where a self-driving car is propelling him or her down the street. Suppose the car’s
control software is covered with contracts all over, but all of them are exclusively for
dynamic checking, none have been proved. If that self-driving car speeds up to 100mph
on a 55mph highway and drives up very close to a car in front of it, then dynamically
checking the contract “distance to car in front should be more than 1 meter” does not
help. If that contract fails, the car’s software would know that it made a mistake, but
it has become too late to do anything about it, because the brakes of the car will never
work out in time. So the car would be “trapped in its own physics”, in the sense that
it has run out of all safe control options. There are still effective ways of making use of
dynamic contract checking in CPS, but the design of those contracts then requires proof
to ensure that safety is always maintained.

For those reasons, this course will focus on the role of proofs as correctness argu-
ments much more than on dynamical checking of contracts. Because of the physical
consequences of malfunctions, correctness requirements on CPS are also more strin-
gent. And their proofs involve significantly more challenging arguments than in Prin-
ciples of Imperative Computation. For those reasons, we will approach CPS proofs
with much more rigor than what you have seen in Principles of Imperative Compu-
tation. But that is a story for a later lecture. The focus of today’s lecture will be to
understand CPS contracts and the first basics of reasoning about CPS.

This material is based on correctness specifications and proofs for CPS [Pla12c, Pla07,
Pla08, Pla10]. We will come back to more details in later lectures, where we will also
use the KeYmaera prover for verifying CPS [PQ08]. More information about safety and
contracts can be found in [Pla10, Chapter 2.2,2.3].

2 The Adventures of a Bouncing Ball

Lecture 3 considered hybrid programs that model a choice of increasing acceleration or
braking. ((

(?x− o > 5; a := a+ 1) ∪ a :=−b
)
;

x′ = v, v′ = a
)∗ (1)

That model did perform interesting control choices and we could continue to study
it in this lecture.

In order to sharpen our intuition about CPS, we will, however, study a very simple
but also very intuitive system instead. Once upon a time, there was a little bouncing
ball that had nothing else to do but bounce up and down the street until it was tired of
doing that (Fig. 1). The bouncing ball was not much of a CPS, because the poor bounc-
ing ball does not actually have any interesting decisions to make. But it nevertheless
formed a perfectly reasonable hybrid system, because, after a closer look, it turns out
to involve discrete and continuous dynamics. The continuous dynamics is caused by

15-424 LECTURE NOTES ANDRÉ PLATZER

http://c0.typesafety.net
http://c0.typesafety.net
http://c0.typesafety.net
http://c0.typesafety.net
http://symbolaris.com/course/fcps13/03-choicecontrol.pdf

Safety & Contracts L4.3

Figure 1: Sample trajectory of a bouncing ball (plotted as position over time)

gravity, which is pulling the ball down and makes it fall from the sky in the first place.
The discrete dynamics comes from the singular discrete event of what happens when
the ball hits the ground and bounces back up. There are a number of ways of modeling
the ball and its impact on the ground with physics. They include a whole range of dif-
ferent more or less realistic physical effects including gravity, aerodynamic resistance,
the elastic deformation on the ground, and so on and so on. But the little bouncing ball
didn’t study enough physics to know anything about those effects. And so it had to go
about understanding the world in easier terms. It was a clever bouncing ball, though,
so it had experienced the phenomenon of sudden change and was trying to use that to
its advantage.

If we are looking for a very simple model of what the bouncing ball does, it is easier
to describe as a hybrid system. The ball at height h is falling subject to gravity:

h′′ = −g

When it hits the ground, which is assumed at height h = 0, the ball bounces back and
jumps back up in the air. Yet, as every child knows, the ball tends to come back up a
little less high than before. Given enough time to bounce around, it will ultimately lie
flat on the ground forever. Until it is picked up again and thrown high up in the air.

Let us model the impact on the ground as a discrete phenomenon and describe what
happens so that the ball jumps back up then. One attempt of understanding this could
be to make the ball jump back up rather suddenly by increasing its height by, say, 10
when it hit the ground h = 0:

h′′ = −g;

if(h = 0)h := h+ 10
(2)

Such a model may be useful for other systems, but would be rather at odds with our
physical experience with bouncing balls, because the ball is indeed slowly climbing
back up rather than suddenly being way up in the air again.

The bouncing ball ponders about what happens when it hits the ground. It does not
suddenly get teleported to a new position above ground like (2) would suggest. In-
stead, the ball suddenly changes its direction. A moment ago, it used to fall down with
a negative velocity (i.e. one that is pointing down into the ground) and suddenly climbs

15-424 LECTURE NOTES ANDRÉ PLATZER

L4.4 Safety & Contracts

back up with a positive velocity (pointing up into the sky). In order to be able to write
such a model, the velocity v will be made explicit in the bouncing ball’s differential
equation:

h′ = v, v′ = −g;

if(h = 0) v :=−v
(3)

Of course, something happens after the bouncing ball reversed its direction because
it hit the ground. Physics continues until it hits the ground again.

h′ = v, v′ = −g;

if(h = 0) v :=−v
h′ = v, v′ = −g;

if(h = 0) v :=−v

(4)

Then, of course, physics moves on again, so the model actually involves a repetition:(
h′ = v, v′ = −g;

if(h = 0) v :=−v
)∗ (5)

Yet, the bouncing ball is now rather surprised. For if it follows that HP (5), it seems as
if it should always be able to come back up to its initial height again. Excited about that
possibility, it tries and tries again but never succeeds to bounce back up as high as it
was before. So there must be something wrong with the model in (5), the ball concludes
and sets out to fix (5).

Having observed itself rather carefully, the bouncing ball concludes that it feels slower
when bouncing back up than it used to be when falling on down. Indeed, it feels less
energetic on its way up. So its velocity must not only flip direction from down to up,
at a bounce, but also seems to shrink in magnitude. The bouncing ball swiftly calls the
corresponding damping factor c and quickly comes up with a better model of itself:(

h′ = v, v′ = −g;

if(h = 0) v :=−cv
)∗ (6)

Yet, running that model in clever ways, the bouncing ball observes that model (6)
could make it fall through the cracks in the ground. Terrified at that thought, the
bouncing ball quickly tries to set the physics right, lest it falls through the cracks in
space before it had a chance to fix its physics. The issue with (6) is that its differential
equation isn’t told when to stop. Yet, the bouncing ball luckily remembers that this is
quite exactly what evolution domains were meant for. Above ground is what it wants
to remain, and so h ≥ 0 is what the ball asks dear physics to obey, since the table is of
rather sturdy built: (

h′ = v, v′ = −g&h ≥ 0;

if(h = 0) v :=−cv
)∗ (7)

Now, indeed, physics will have to stop evolving before gravity has made our little
bouncing ball fall through the ground. Yet, physics could still choose to stop evolving

15-424 LECTURE NOTES ANDRÉ PLATZER

Safety & Contracts L4.5

while the ball is still high up in the sky. In that case, the ball will not yet be on the
ground and line 2 of (7) would have no effect because h 6= 0 still. This is not a catastro-
phe, however, because the loop in (7) could simply repeat, which would allow physics
to continue to evolve the differential equation further.

Quite happy with model (7) for itself, the bouncing ball goes on to explore whether
the model does what the ball expects it to do.

3 Postcondition Contracts for CPS

Hybrid programs are interesting models for CPS. They describe the behavior of a CPS,
ultimately captured by their semantics ρ(α), which is a reachability relation on states
(Lecture 3). Yet, reliable development of CPS also needs a way of ensuring that the
behavior will be as expected. So, for example, we may want the behavior of a CPS to
always satisfy certain crucial safety properties. A robot, for example, should never do
something unsafe like running over a human being.1

The little bouncing ball may consider itself less safety-critical, except that it may be
interested in its own safety. It still wants to make sure that it couldn’t ever fall through
the cracks in the ground. And even though it would love to jump all the way up to the
moon, the ball is also terrified of big heights and would never want to jump any higher
than it was in the very beginning. So, when H denotes the initial height, the bouncing
ball would love to know whether its height will always stay within 0 ≤ h ≤ H when
following HP (7).

Scared of what otherwise might happen to it if 0 ≤ h ≤ H should ever be violated, the
bouncing ball decides to make its goals for the HP (7) explicit. Fortunately, the bounc-
ing ball excelled in the course Principles of Imperative Computation and recalls that
contracts such as @requires and @ensures have been used in that course to make be-
havioral expectations for C0 programs explicit. Even though the bouncing ball clearly
does not deal with a C0 program, but rather a hybrid program, it still puts @ensures(F)
contracts in front of HP (7) to express that all runs of that HP are expected to lead only
to states in which logical formula F is true. The bouncing ball even uses @ensures

twice, once for each of its expectations.

@ensures(0 ≤ h)

@ensures(h ≤ H)(
h′ = v, v′ = −g&h ≥ 0;

if(h = 0) v :=−cv
)∗ (8)

1Safety of robots has, of course, been aptly defined by Asimov [Asi42] with his Three Laws of Robotics:

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.

2. A robot must obey the orders given to it by human beings, except where such orders would conflict
with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the First or
Second Law.

But their exact rendition in logic still remains a challenge.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/03-choicecontrol.pdf
http://c0.typesafety.net

L4.6 Safety & Contracts

4 Precondition Contracts for CPS

Having learned from the Principles of Imperative Computation experience, the little
bouncing ball immediately starts thinking about whether the @ensures contracts in (8)
would, in fact, always be true after running that HP. After all, the bouncing ball would
really love to know that it can rely on that contract never failing.

Wondering about whether the @ensures contract in (8) would always succeed, the
bouncing ball notices that this would have to depend on what values the bouncing ball
starts with. It called H its initial height, but the HP (8) cannot know that. For one thing,
the contracts in(8) would be hard to fulfill if H = −5, because 0 ≤ h and h ≤ H can
impossibly both be true then.

So the bouncing ball figures it should demand a @requires contract with the precon-
dition h = H to say that the height, h, of the bouncing ball is initially H . Because that
still does not (obviously) ensure that 0 ≤ h has a chance of holding, it requires 0 ≤ H
to hold initially:

@requires(h = H)

@requires(0 ≤ H)

@ensures(0 ≤ h)

@ensures(h ≤ H)(
h′ = v, v′ = −g&h ≥ 0;

if(h = 0) v :=−cv
)∗

(9)

5 Invariant Contracts for CPS

The little bouncing ball remembers the prominent role that invariants have played in
the course Principles of Imperative Computation. So, the ball ventures including an
invariant with its HP. In C0, invariants were associated with loops, e.g.

i = 0;

while (i < 10)

//@loop_invariant 0 <= i && i <= 10;

{

i++;

}

The bouncing ball, thus, figures that invariants for loops in HPs should also be associ-
ated with a loop, which is written α∗ for nondeterministic repetition. After a moment’s
thought, the bouncing ball decides that falling through the cracks in the ground is still

15-424 LECTURE NOTES ANDRÉ PLATZER

http://c0.typesafety.net
http://c0.typesafety.net

Safety & Contracts L4.7

it’s biggest worry, so the invariant it’d like to maintain is h ≥ 0:

@requires(h = H)

@requires(0 ≤ H)

@ensures(0 ≤ h)

@ensures(h ≤ H)(
h′ = v, v′ = −g&h ≥ 0;

if(h = 0) v :=−cv
)∗
@invariant(h ≥ 0)

(10)

On second thought, the little bouncing ball is less sure what exactly the @invariant(F)
contract would mean for a CPS. So it decides to first give more thought to the proper
way of phrasing CPS contracts and what they mean.

We will get back to the @invariant(F) construct in a later lecture.

6 Logical Formulas for Hybrid Programs

CPS contracts play a very useful role in the development of CPS models and CPS pro-
grams. Using them as part of their design right from the very beginning is a good idea,
probably even more crucial than it was in 15-122 Principles of Imperative Computation
for the development of C0 programs, because CPS have more stringent requirements
on safety.

Yet, we do not only want to program CPS, we also want to and have to understand
thoroughly what they mean, what their contracts mean, and how we convince our-
selves that the CPS contracts are respected by the CPS program. It turns out that this
is where mere contracts are at a disadvantage compared to full logic. Logic allows not
only the specification of a whole CPS program, but also an analytic inspection of its
parts as well as argumentative relations between contracts and program parts.

Differential dynamic logic (dL) [Pla12c, Pla08, Pla12a, Pla07, Pla10] is the logic of hy-
brid systems that this courses uses for specification and verification of cyber-physical
systems. There are more aspects of logic for cyber-physical systems [Pla12c, Pla12b],
which will be studied (to some extent) in later parts of this course.

The most unique feature of differential dynamic logic for our purposes is that it al-
lows us to refer to hybrid systems. Lecture 2 introduced first-order logic of real arith-
metic.

Note 1 (Limits of first-order logic for CPS). First-order logic of real arithmetic is a
crucial basis for describing what is true and false about CPS, because it allows us to refer
to real-valued quantities like positions and velocities and their arithmetic relations. Yet,
that is not enough, because first-order logic describes what is true in a single state of a
system. It has no way of referring to what will be true in future states of a CPS, nor of
describing the relationship of the initial state of the CPS to the final state of the CPS.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://c0.typesafety.net
http://symbolaris.com/course/fcps13/02-diffeq.pdf

L4.8 Safety & Contracts

Recall that this relationship, ρ(α), is what ultimately constitutes the semantics of HP α.

Note 2 (Differential dynamic logic principle). Differential dynamic logic (dL) extends
first-order logic of real arithmetic with operators that refer to the future states of a CPS in
the sense of referring to the states that are reachable by running a given HP. The logic dL
provides a modal operator [α], parametrized by α, that refers to all states reachable by HP
α according to the reachability relation ρ(α) of its semantics. This modal operator can be
placed in front of any dL formula φ. The dL formula

[α]φ

expresses that all states reachable by HP α satisfy formula φ.
The logic dL also provides a modal operator 〈α〉, parametrized by α, can be placed in

front of any dL formula φ. The dL formula

〈α〉φ

expresses that there is at least one state reachable by HP α for which φ holds. The modal-
ities [α] and 〈α〉can be used to express necessary or possible properties of the transition
behavior of α.

An @ensures(E) postcondition for a HP α can be expressed directly as a logical for-
mula in dL:

[α]E

So, the first CPS postcondition @ensures(0 ≤ h) for the bouncing ball HP in (8) can be
stated as a dL formula:

[
(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗
] 0 ≤ h (11)

The second CPS postcondition @ensures(h ≤ H) for the bouncing ball HP in (8) can be
stated as a dL formula as well:

[
(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗
]h ≤ H (12)

The logic dL allows all other logical operators from first-order logic, including conjunc-
tion (∧). So, the two dL formulas (11) and (12) can be stated together as a single dL
formula:

[
(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗
] 0 ≤ h

∧ [
(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗
]h ≤ H

(13)

Stepping back, we could also have combined the two postconditions @ensures(0 ≤
h) and @ensures(h ≤ H) into a single postcondition @ensures(0 ≤ h ∧ h ≤ H). The
translation of that into dL would have gotten us an alternative way of combining both
statements about the lower and upper bound on the height of the bouncing ball into a
single dL formula:

[
(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗
] (0 ≤ h ∧ h ≤ H) (14)

15-424 LECTURE NOTES ANDRÉ PLATZER

Safety & Contracts L4.9

Which way of representing what we expect bouncing balls to do is better? Like (13) or
like (14)? Are they equivalent? Or do they express different things?

15-424 LECTURE NOTES ANDRÉ PLATZER

L4.10 Safety & Contracts

It turns out that there is a very simple argument within the logic dL that shows that
(13) and (14) are equivalent. And not just that those two particular logical formulas are
equivalent but that the same equivalence holds for any dL formulas of this form. This
will be investigated formally in a later lecture, but it is useful to observe now already
to sharpen our intuition.

Having said that, do we believe dL formula (13) should be valid? Should (14) be
valid? Before we study this question in any further detail, the first question should be
what it means for a modal formula [α]φ to be true. What is its semantics? Better yet,
what exactly is its syntax in the first place?

7 Syntax of Differential Dynamic Logic

The formulas of differential dynamic logic are defined like the formulas of first-order
logic of real arithmetic with the additional capability of using modal operators for any
hybrid program α.

Definition 1 (dL formula). The formulas of differential dynamic logic (dL) are defined
by the grammar (where φ, ψ are dL formulas, θ1, θ2 (polynomial) terms, x a vari-
able, α a HP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

Operators >,≤, <,↔ can be defined as usual, e.g., φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ).

We use the notational convention that unary operators (including ¬ and quantifiers
∀x,∃x and modalities [α], 〈α〉)2 bind stronger than binary operators. In particular, quan-
tifiers and modal operators bind strong, i.e. their scope only extends to the formula
immediately after. Thus, [α]φ ∧ ψ ≡ ([α]φ) ∧ ψ and ∀xφ ∧ ψ ≡ (∀xφ) ∧ ψ. In our
notation, we also let ∧ bind stronger than ∨, which binds stronger than→,↔. We also
associate→ to the right so that φ → ψ → ϕ ≡ φ → (ψ → ϕ). To avoid confusion, we
do not adopt precedence conventions between →,↔ but expect explicit parentheses.
So φ → ψ ↔ ϕ would be considered illegal and explicit parentheses are required to
distinguish φ → (ψ ↔ ϕ) from (φ → ψ) ↔ ϕ. Likewise φ ↔ ψ → ϕ would be con-
sidered illegal and explicit parentheses are required to distinguish φ ↔ (ψ → ϕ) from
(φ↔ ψ)→ ϕ.

2 Quantifiers are only quite arguably understood as unary operators. Yet, ∀x is a unary operator on
formulas while ∀ would be an operator with arguments of mixed syntactic categories. In a higher-order
context, it can also be understood more formally by understanding ∀xφ as an operator on functions:
∀(λx.φ). Similar cautionary remarks apply to the understanding of modalities as unary operators. The
primary reason for adopting this understanding is that it simplifies the precedence rules.

15-424 LECTURE NOTES ANDRÉ PLATZER

Safety & Contracts L4.11

8 Semantics of Differential Dynamic Logic

For dL formulas that are also formulas of first-order real arithmetic (i.e. formulas with-
out modalities), the semantics of dL formulas is the same as that of first-order real arith-
metic. The semantics of modalities [α] and 〈α〉 quantifies over all ([α]) or some (〈α〉) of
the states reachable by following HP α, respectively.

Definition 2 (dL semantics). The satisfaction relation ν |= φ for a dL formula φ in
state ν is defined inductively:

• ν |= (θ1 = θ2) iff [[θ1]]ν = [[θ2]]ν .

• ν |= (θ1 ≥ θ2) iff [[θ1]]ν ≥ [[θ2]]ν .

• ν |= ¬φ iff ν 6|= φ, i.e. if it is not the case that ν |= φ.

• ν |= φ ∧ ψ iff ν |= φ and ν |= ψ.

• ν |= φ ∨ ψ iff ν |= φ or ν |= ψ.

• ν |= φ→ ψ iff ν 6|= φ or ν |= ψ.

• ν |= φ↔ ψ iff (ν |= φ and ν |= ψ) or (ν 6|= φ and ν 6|= ψ).

• ν |= ∀xφ iff νdx |= φ for all d ∈ R.

• ν |= ∃xφ iff νdx |= φ for some d ∈ R.

• ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α).

• ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α).

If ν |= φ, then we say that φ is true at ν or that ν is a model of φ. A formula φ is
valid, written � φ, iff ν |= φ for all states ν. A formula φ is a consequence of a set of
formulas Γ, written Γ � φ, iff, for each ν: (ν |= ψ for all ψ ∈ Γ) implies that ν |= φ.

9 CPS Contracts in Logic

Now that we know what truth and validity are, let’s go back to the previous question.
Is dL formula (13) valid? Is (14) valid? Indeed, they are equivalent, i.e. the dL formula

(13)↔ (14)

15-424 LECTURE NOTES ANDRÉ PLATZER

L4.12 Safety & Contracts

is valid. Expanding the abbreviations that is the following dL formula is valid:(
[
(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗
] 0 ≤ h

∧ [
(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗
]h ≤ H

)
↔ [

(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗
] (0 ≤ h ∧ h ≤ H)

(15)

So if (13) is valid, then so should (14) be (Exercise 1). But is (13) valid?

15-424 LECTURE NOTES ANDRÉ PLATZER

Safety & Contracts L4.13

Certainly, (13) is not true in a state ν where ν(h) < 0, because from that initial state,
no repetitions of the loop (which is allowed by nondeterministic repetition, Exercise 3),

will lead to a state ω def
= ν in which ω 6|= 0 ≤ h. Thus, (13) only has a chance of being

valid in initial states that satisfy further assumptions, including 0 ≤ h and h ≤ H . In
fact, that is what the preconditions were meant for in Sect. 4. How can we express a
precondition contract in a dL formula?

Preconditions serve a very different role than postconditions do. Postconditions of
HP α are what we want to hold true after every run of α. The meaning of a postcon-
dition is what is rather difficult to express in first-order logic (to say the least). That
is what dL has modalities for. Do we also need any extra logical operator to express
preconditions?

The meaning of a precondition @requires(A) of a HP α is that it is assumed to hold
before the HP starts. If A holds when the HP starts, then its postcondition @ensures(B)
holds after all runs of HP α. What if A does not hold when the HP starts?

If precondition A does not hold initially, then all bets are off, because the person who
started the HP did not obey its requirements, which says that it should only be run
if its preconditions are met. The CPS contract @requires(A) @ensures(B) for a HP α
promises that B will always hold after running α if A was true initially when α started.
Thus, the meaning of a precondition can be expressed easily using an implication

A→ [α]B (16)

because an implication is valid if, in every state, its left-hand side is false or its right-
hand side true. The implication (16) is valid (� A→ [α]B), if, indeed, for every state
ν in which precondition A holds (ν |= A), it is the case that all runs of HP α lead to
states ω (with (ν, ω) ∈ ρ(α)) in which postcondition B holds (ω |= B). The dL formula
(16) does not say what happens in states ν in which the precondition A does not hold
(ν 6|= A).

How does formula (16) talk about the runs of a HP and postconditionB again? Recall
that the dL formula [α]B is true in exactly those states in which all runs of HP α lead
only to states in which postcondition B is true. The implication in (16), thus, ensures
that this holds in all (initial) states that satisfy precondition A.

Note 5 (Contracts to dL Formulas). Consider a HP αwith a CPS contract using a single
@requires(A) precondition and a single @ensures(B) postcondition:

@requires(A)

@ensures(B)

α

This CPS contract can be expressed directly as a logical formula in dL:

A→ [α]B

15-424 LECTURE NOTES ANDRÉ PLATZER

L4.14 Safety & Contracts

CPS contracts with multiple preconditions and multiple postconditions can directly
be expressed as a dL formula as well (Exercise 4).

Recall HP (10), which is shown here in a slightly simplified form:

@requires(0 ≤ h ∧ h = H)

@ensures(0 ≤ h ∧ h ≤ H)(
h′ = v, v′ = −g&h ≥ 0;

if(h = 0) v :=−cv
)∗ (17)

The dL formula expressing that the CPS contract for HP (17) holds is:

0 ≤ h∧h = H →
[(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗]
(0 ≤ h∧h ≤ H) (18)

So to find out whether (17) satisfies its CPS contract, we ask whether the dL formula
(18) is valid.

In order to find out whether such a formula is valid, i.e. true in all states, we need
some operational way that allows us to tell whether it is valid, because mere inspec-
tion of the semantics alone is not a particularly scalable way of approaching validity
question.

10 Identifying Requirements of a CPS

Before trying to prove any formulas to be valid, it is a good idea to check whether
all required assumptions have been found that are necessary for the formula to hold.
So let us scrutinize dL formula (18) and ponder whether there are any circumstances
under which it is not true. Even though the bouncing ball is a rather impoverished
CPS (it suffers from a disparate lack of control), its immediate physical intuition still
makes the ball an insightful example for illustrating how critical it is to identify the
right requirements.

Maybe the first thing to notice is that the HP mentions g, which is meant to represent
the standard gravity constant, but the formula (18) does not say. Certainly, if gravity
were negative (g < 0), bouncing balls would function rather differently. They would
suddenly be floating balls disappearing into the sky. So let’s modify (18) to assume
g = 9.81:

0 ≤ h∧h = H∧g = 9.81→
[(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗]
(0 ≤ h∧h ≤ H)

(19)
Let’s undo unnecessarily strict requirements right away, though. What would the

bouncing ball do if it were set loose on the moon instead of on Earth? Would it still
fall? Things are much lighter on the moon. Yet they still fall down ultimately, which
is again the phenomenon known as gravity, just with a different constant (1.6 on the
moon and 25.9 on Jupiter). Besides, none of those constants was particularly precise.
Earth’s gravity is more like 9.8067. The behavior of the bouncing ball depends on the
value of that parameter g.

15-424 LECTURE NOTES ANDRÉ PLATZER

Safety & Contracts L4.15

Note 6 (Parameters). A common feature of CPS is that their behavior is subject to pa-
rameters, which can have quite a non-negligible impact. Yet, it is very hard to determine
precise values for parameters by measurements. When a particular concrete value for a pa-
rameter has been assumed to prove a property of a CPS, it is not clear whether that property
holds for the true system, which may in reality have a slightly different parameter value.

Instead of a numerical value for a parameter, our analysis can proceed by treating the
parameter as a symbolic parameter, i.e. a variable such as g, which is not assumed to hold
a specific numerical value like 9.81. Instead, we would only assume certain constraints
about the parameter, say g > 1 without choosing a specific value. If we then analyze
the CPS with this symbolic parameter g, all analysis results will continue to hold for any
concrete choice of g respecting its constraints (here g > 1). That results in a stronger
statement about the system, which is less fragile as it does not break down just because the
true g is ≈ 9.8067 rather than the previously assumed g = 9.81. Often times, those more
general statements with symbolic parameters can even be easier to prove than statements
about systems with specific magic numbers chosen for their parameters.

In light of these thoughts, we could assume 9 < g < 10 to be the gravity constant for
Earth. Yet, we can also just consider all bouncing balls on all planets in the solar system
or elsewhere at once by assuming only g > 0 instead of g = 9.81 as in (19), since this is
the only aspect of gravity that the usual behavior of a bouncing ball depends on:

0 ≤ h∧h = H∧g > 0→
[(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗]
(0 ≤ h∧h ≤ H)

(20)
Do we expect dL formula (20) to be valid, i.e. true in all states? What could go wrong?

The insight from modifying (18) to (19) and finally to (20) started with the observation
that (18) did not include any assumptions about g. It is worth noting that (20) also
does not assume anything about c. Bouncing balls clearly would not work as expected
if c > 1, because such anti-damping would cause the bouncing ball to jump back up
higher and higher and higher and ultimately as high up as the moon, clearly falsifying
(20). Consequently, (20) only has a chance of being true when assuming that c is not too
big:

0 ≤ h ∧ h = H ∧ g > 0 ∧ 1 > c ≥ 0→[(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗]
(0 ≤ h ∧ h ≤ H) (21)

Is (21) valid now? Or does its truth depend on more assumptions that have not been
identified yet? Now, all parameters (H, g, c) have some assumptions in (21). Is there
some requirement we forgot about? Or did we find them all?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

L4.16 Safety & Contracts

What about variable v? Why is there no assumption about it yet? Should there be
one? Velocity v changes over time. What is its initial value allowed to be? What could
go wrong?

Indeed, the initial velocity v of the bouncing ball could be positive (v > 0), which
would make the bouncing ball climb initially, clearly exceeding its initial heightH . This
would correspond to the bouncing ball being thrown high up in the air in the beginning,
so that its initial velocity v is upwards from its initial height h = H . Consequently, (21)
has to be modified to assume v ≤ 0 holds initially:

0 ≤ h ∧ h = H ∧ v ≤ 0 ∧ g > 0 ∧ 1 > c ≥ 0→[(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗]
(0 ≤ h ∧ h ≤ H) (22)

Now there’s finally assumptions about all parameters and variables of (22). That does
not mean that we found the right assumptions, yet, obviously, but is still a good sanity
check. Before wasting cycles on trying to prove or otherwise justify (22), let’s try once
more whether we can find an initial state ν that satisfies all assumptions v ≤ 0 ∧ 0 ≤
h∧h = H ∧ g > 0∧ 1 > c ≥ 0 in the antecedent (i.e. left-hand side of the implication) of
(22) so that ν does not satisfy the succedent (i.e. right-hand side of implication) of (22).
Such an initial state ν falsifies (22) and would, thus, represent a counterexample.

Is there still a counterexample to (22)? Or have we successfully identified all assump-
tions so that it is now valid?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

Safety & Contracts L4.17

Formula (22) still has a problem. Even if the initial state satisfies all requirements
in the antecedent of (22), the bouncing ball might still jump higher than it ought to,
i.e. higher than its initial height H . That happens if the bouncing ball has a very big
downwards velocity, so if v is a lot smaller than 0 (sometimes written v � 0). If v is
a little smaller than 0, then the damping c will eat up enough the ball’s kinetic energy
so that it cannot jump back up higher than it was initially (H). But if v is a lot smaller
than 0, then it starts falling down with so much kinetic energy that the damping on the
ground does not slow it down enough, so the ball will come bouncing back higher than
it was originally. Under which circumstance this happens depends on the relationship
of the initial velocity and height to the damping coefficient.

We could explore this relationship in more detail. But it is actually easier to infer this
relationship by conducting a proof. So we modify (22) to simply assume v = 0 initially:

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0→[(
h′ = v, v′ = −g&h ≥ 0; if(h = 0) v :=−cv

)∗]
(0 ≤ h ∧ h ≤ H) (23)

Is dL formula (23) valid now? Or does it still have a counterexample?
Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

L4.18 Safety & Contracts

It seems like all required assumptions have been identified to make the dL formula
(23) valid so that the bouncing ball described in (23) satisfies the postcondition 0 ≤ h ≤
H . But after so many failed starts and missing assumptions and requirements for the
bouncing ball, it is a good idea to prove (23) once and for all beyond any doubt.

In order to be able to prove dL formula (23), however, we need to investigate how
proving works. How can dL formulas be proved? And, since first-order formulas are
dL formulas as well, one part of the question will be: how can first-order formulas be
proved? How can real arithmetic be proved? How can requirements for the safety of
CPS be identified systematically? All these questions will be answered in this course,
but not all of them in this lecture.

In order to make sure we only need to worry about a minimal set of operators of dL
for proving purposes, let’s simply (23) by getting rid of if-then-else (Exercise 7):

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0→[(
h′ = v, v′ = −g&h ≥ 0; (?h = 0; v :=−cv ∪ ?h 6= 0)

)∗]
(0 ≤ h ∧ h ≤ H) (24)

Observing the non-negligible difference between the original conjecture (19) and the
revised and improved conjecture (24), leads us to often adopt the following principle.

Note 7 (Principle of Cartesian Doubt). In 1641, René Descartes suggested an attitude
of systematic doubt where he would be skeptical about the truth of all believes until he
found reason that they were justified. This principle is now known as Cartesian Doubt or
skepticism.

We will have perfect justifications: proofs. But until we have found proof, it is often
helpful to adopt the principle of Cartesian Doubt in a very weak and pragmatic form.
Before setting out on the journey to prove a conjecture, we first scrutinize it to see if we
can find a counterexample that would make it false. For such a counterexample will not
only save us a lot of misguided effort in trying to prove a false conjecture, but also helps us
identify missing assumptions in conjectures and justifies the assumptions to be necessary.
Surely, if, without assumption A, a counterexample to a conjecture exists, then A must be
necessary.

11 Intermediate Conditions for CPS

Before proceeding any further with ways of proving dL formulas, let’s simplify (24)
grotesquely by removing the loop:

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0→[
h′ = v, v′ = −g&h ≥ 0; (?h = 0; v :=−cv ∪ ?h 6= 0)

]
(0 ≤ h ∧ h ≤ H) (25)

Removing the loop clearly changes the behavior of the bouncing ball. It no longer
bounces particularly well. All it can do now is fall and, if it reaches the floor, have its

15-424 LECTURE NOTES ANDRÉ PLATZER

Safety & Contracts L4.19

velocity reverted without actually climbing back up. So if we manage to prove (25),
we certainly have not shown the actual dL formula (24). But it’s a start, because the
behavior modeled in (25) is a part of the behavior of (24). So it is useful (and easier) to
understand (25) first.

The dL formula (25) has a number of assumptions 0 ≤ h∧h = H ∧v = 0∧g > 0∧1 >
c ≥ 0 that can be used during the proof. It claims that the postcondition 0 ≤ h ∧ h ≤ H
holds after all runs of the HP in the [·] modality. The top-level operator in the modality
of (25) is a sequential composition (;), for which we need to find a proof argument.3

The HP in (25) follows a differential equation first and then, after the sequential com-
position (;), proceeds to run a discrete program (?h = 0; v :=−cv ∪ ?h 6= 0). Depending
on how long the HP follows its differential equation, the intermediate state after the
differential equation and before the discrete program will be rather different.

Note 8 (Intermediate states of sequential compositions). This phenomenon happens
in general for sequential compositions α;β. The first HP α may reach a whole range of
states, which represent intermediate states for the sequential composition α;β, i.e. states
that are final states for α and initial states for β. The intermediate states of α;β are the
states µ in the semantics ρ(α;β) from Lecture 3:

ρ(α;β) = ρ(β) ◦ ρ(α) = {(ν, ω) : (ν, µ) ∈ ρ(α), (µ, ω) ∈ ρ(β)}

Can we find a way of summarizing what all intermediate states between the differ-
ential equation and the discrete program of (25) have in common? They differ by how
long the CPS has followed the differential equation.

If the system has followed the differential equation of (25) for time t, then the result-
ing velocity v(t) at time t and height h(t) at time t will be

v(t) = −gt, h(t) = H − g

2
t2 (26)

This answer can be found by integrating or solving the differential equations. This
knowledge (26) is useful but it is not (directly) clear how to use it to describe what
all intermediate states have in common, because the time t in (26) is not available as
a variable in the HP (25).4 Can the intermediate states be described by a relation of
the variables that (unlike t) are actually in the system? That is, an (arithmetic) formula
relating h, v, g,H?

Before you read on, see if you can find the answer for yourself.

3 The way we proceed here to prove (25) is actually not the recommended way. Later on, we will see a
much easier way. But it is instructive to understand the more verbose approach we take first. This also
prepares us for the challenges that lie ahead when proving properties of loops.

4 Following these thoughts a bit further reveals how (26) can actually be used perfectly well to describe
intermediate states when changing the HP (25) a little bit. But working with solutions is still not the
way that gets us to the goal the quickest, usually.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/03-choicecontrol.pdf

L4.20 Safety & Contracts

One way of producing a relation from (26) is to get the units aligned and get rid of
time t. Time drops out of the “equation” when squaring the identity for velocity:

v(t)2 = g2t2, h(t) = H − g

2
t2

and multiplying the identity for position by 2g:

v(t)2 = g2t2, 2gh(t) = 2gH − 2
g2

2
t2

Then substituting the first equation into the second yields

2gh(t) = 2gH − v(t)2

This equation does not depend on time t, so we expect it to hold after all runs of the
differential equation irrespective of t:

2gh = 2gH − v2 (27)

We conjecture the intermediate condition (27) to hold in the intermediate state of the
sequential composition in (25). In order to prove (25) we can decompose our reasoning
into two parts. The first part will prove that the intermediate condition (27) holds after
all runs of the first differential equation. The second part will assume (27) to hold and
prove that all runs of the discrete program in (25) from any state satisfying (27) satisfy
the postcondition 0 ≤ h ∧ h ≤ H .

Note 9 (Intermediate conditions as contracts for sequential composition). For a
HP that is a sequential composition α;β an intermediate condition is a formula that
characterizes the intermediate states in between HP α and β. That is, for a dL formula

A→ [α;β]B

an intermediate condition is a formula E such that the following dL formulas are valid:

A→ [α]E and E → [β]B

The first dL formula expresses that intermediate conditionE characterizes the intermediate
states accurately, i.e. E actually holds after all runs of HP α from states satisfying A. The
second dL formula says that the intermediate conditionE characterizes intermediate states
well enough, i.e.E is all we need to know about a state to conclude that all runs of β end up
in B. That is, from all states satisfying E (in particular from those that result by running
α from a state satisfying A), B holds after all runs of β.

For proving (25), we conjecture that (27) is an intermediate condition, which requires
us to prove the following two dL formulas:

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0→ [h′ = v, v′ = −g&h ≥ 0]2gh = 2gH − v2

2gh = 2gH − v2 → [?h = 0; v :=−cv ∪ ?h 6= 0] (0 ≤ h ∧ h ≤ H)
(28)

15-424 LECTURE NOTES ANDRÉ PLATZER

Safety & Contracts L4.21

Let’s focus on the latter formula. Do we expect to be able to prove it? Do we expect it
to be valid?

Before you read on, see if you can find the answer for yourself.

15-424 LECTURE NOTES ANDRÉ PLATZER

L4.22 Safety & Contracts

The second formula of (28) claims that 0 ≤ h holds after all runs of ?h = 0; v :=−cv ∪
?h 6= 0 from all states that satisfy 2gh = 2gH − v2. That is a bit much to hope for,
however, because 0 ≤ h is not even ensured in the precondition of this second formula.
So the second formula of (28) is not valid. How can this problem be resolved? By
adding 0 ≤ h into the intermediate condition, thus, requiring us to prove:

0 ≤ h ∧ h = H ∧ v = 0 ∧ g > 0 ∧ 1 > c ≥ 0→ [h′ = v, v′ = −g&h ≥ 0](2gh = 2gH − v2 ∧ h ≥ 0)

2gh = 2gH − v2 ∧ h ≥ 0→ [?h = 0; v :=−cv ∪ ?h 6= 0] (0 ≤ h ∧ h ≤ H)
(29)

Proving the first formula in (29) requires us to handle differential equations, which
we will get to later. The second formula in (29) is the one whose proof is discussed first.

12 A Proof of Choice

The second formula in (29) has a nondeterministic choice (∪) as the top-level operator
in its [·] modality. How can we prove a formula of the form

A→ [α ∪ β]B (30)

Recalling its semantics from Lecture 3,

ρ(α ∪ β) = ρ(α) ∪ ρ(β)

HP α ∪ β has two possible behaviors. It could run as HP α does or as β does. And it is
chosen nondeterministically which of the two behaviors happens. Since the behavior
of α ∪ β could be either α or β, proving (30) requires provingB to hold after α and after
β. More precisely, (30) assumes A to hold initially, otherwise (30) is vacuously true.
Thus, proving (30) allows us to assume A and requires us to prove that B holds after all
runs of α (which is permitted behavior for α ∪ β) and to prove that, assuming A holds
initially, that B holds after all runs of β (which is also permitted behavior of α ∪ β).

Note 10 (Proving choices). For a HP that is a nondeterministic choice α ∪ β, we can
prove

A→ [α ∪ β]B

by proving the following dL formulas:

A→ [α]B and A→ [β]B

Using these thoughts on the second formula of (29), we could prove that formula if
we would manage to prove both of the following dL formulas:

2gh = 2gH − v2 ∧ h ≥ 0→ [?h = 0; v :=−cv] (0 ≤ h ∧ h ≤ H)

2gh = 2gH − v2 ∧ h ≥ 0→ [?h 6= 0] (0 ≤ h ∧ h ≤ H)
(31)

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/03-choicecontrol.pdf

Safety & Contracts L4.23

13 Proofs of Tests

Consider the second formula of (31). Proving it requires us to understand how to han-
dle a test ?H in a modality [?H]. The semantics of a test ?H from Lecture 3

ρ(?H) = {(ν, ν) : ν |= H} (32)

says that a test ?H completes successfully without changing the state in any state ν in
which H holds (i.e. ν |= H) and fails to run in all other states (i.e. where ν 6|= H). How
can we prove a formula with a test:

A→ [?H]B (33)

This formula expresses that from all initial states satisfyingA all runs of ?H reach states
satisfying B. When is there a run of ?H at all? There is a run from state ν if and only
if H holds in ν. So the only cases to worry about those initial states that satisfy H
as, otherwise, the HP in (33) cannot execute at all by fails miserably so that the run is
discarded. Hence, we get to assume H holds, as the HP ?H does not otherwise execute.
In all states that the HP ?H reaches from states satisfying A, (33) conjectures that B
holds. Now, by (32), the final states that ?H reaches are the same as the initial state (as
long as they satisfy H so that HP ?H can be executed at all). That is, postcondition B
needs to hold in all states from which ?H runs (i.e. that satisfy H) and that satisfy the
precondition A. So (33) can be proved by proving

A ∧H → B

Note 11 (Proving tests). For a HP that is a test ?H , we can prove

A→ [?H]B

by proving the following dL formula:

A ∧H → B

Using this for the second formula of (31), Note 11 reduces proving the second formula
of (31)

2gh = 2gH − v2 ∧ h ≥ 0→ [?h 6= 0] (0 ≤ h ∧ h ≤ H)

to proving
2gh = 2gH − v2 ∧ h ≥ 0 ∧ h 6= 0→ 0 ≤ h ∧ h ≤ H (34)

Now we are left with arithmetic that we need to prove. Proofs for arithmetic and
propositional logical operators such as ∧ and → will be considered in a later lecture.
For now, we notice that the formula 0 ≤ h in the right-hand side of→ seems justified

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/03-choicecontrol.pdf

L4.24 Safety & Contracts

by assumption h ≥ 0. And that h ≤ H does not exactly have a justification in (34),
because we lost the assumptions about H somewhere.

How could that happen? We used to know h ≤ H in (25). We also still knew about
it in the first formula of (29). But we let it disappear from the second formula of (29),
because we chose an intermediate condition that was too weak when constructing (29).

This is a common problem in trying to prove properties of CPS or of any other math-
ematical statements. One of our intermediate steps might have been too weak, so that
our attempt of proving it fails and we need to revisit how we got there. For sequential
compositions, this is actually a nonissue as soon as we move on (in the next lecture) to
a proof technique that is more useful than the intermediate conditions from Note 9. But
similar difficulties can arise in other parts of proof attempts.

In this case, the fact that we lost h ≤ H can be fixed by including it in the interme-
diate conditions, because it can be shown to hold after the differential equation still.
Other crucial assumptions have also suddenly disappeared in our reasoning. An extra
assumption 1 > c ≥ 0, for example, is crucially needed to justify the first formula of
(31). It is somewhat easier to see why that particular assumption can be added to the
intermediate contract without changing the argument much. The reason is that c never
ever changes during the system run.

Note 12. It is very difficult to come up with bug-free code. Just thinking about your
assumptions really hard does not ensure correctness, but we can gain confidence that our
system does what we want it to by proving that certain properties are satisfied.

Changing the assumptions and arguments in a hybrid program around during the search
for a proof of safety is something that happens frequently. It is easy to make subtle mistakes
in informal arguments such as I need to know C here and I would know C if I had included
it here or there, so now I hope the argument holds. This is one of many reasons why we
are better off if our CPS proofs are rigorous, because we would rather not end up in trouble
because of a subtle aw in a correctness argument. A formal proof calculus for differential
dynamic logic (dL) will help us avoid the pitfalls of informal arguments. The theorem
prover KeYmaera that you will use in this course implements a proof calculus for dL.

A related observation from our informal arguments in this lecture is that we desperately
need a way to keep an argument consistent as a single argument justifying one conjecture.
Quite the contrary to the informal loose threads of argumentation we have pursued in this
lecture for the sake of developing an intuition. Consequently, we will investigate what
constitutes an actual proof in subsequent lectures. A proof in which the relationship of
premises to conclusions via proof steps is rigorous.

Moreover, there’s two loose ends in our arguments. For one, the differential equation
in (29) is still waiting for an argument that could help us prove it. Also, the assignment
in (31) still needs to be handled and its sequential composition needs an intermediate
contract.

15-424 LECTURE NOTES ANDRÉ PLATZER

Safety & Contracts L4.25

Exercises

Exercise 1. Let A,B be dL formulas. Suppose A↔ B is valid and A is valid. Is B valid?
Prove or disprove.

Exercise 2. Let A,B be dL formulas. Suppose A ↔ B is true in state ν and A is true in
state ν. That is, ν |= A↔ B and ν |= A. Is B true in state ν? Prove or disprove. Is B
valid? Prove or disprove.

Exercise 3. Let α be an HP. Let ν be a state with ν 6|= φ. Does ν 6|= [α∗]φ hold? Prove or
disprove.

Exercise 4. Suppose you have a HP α with a CPS contract using multiple preconditions
A1, . . . , An and multiple postconditions B1, . . . , Bm:

@requires(A1)

@requires(A2)

...
@requires(An)

@ensures(B1)

@ensures(B2)

...
@ensures(Bm)

α

How can this CPS contract be expressed in a dL formula?

Exercise 5. For each of the following dL formulas, determine if they are valid, satisfiable,
and/or unsatisfiable:

1. [?x ≥ 0]x ≥ 0.

2. [?x ≥ 0]x ≤ 0.

3. [?x ≥ 0]x < 0.

4. [?true]true .

5. [?true]false .

6. [?false]true .

7. [?false]false .

8. [x′ = 1 & true]true .

9. [x′ = 1 & true]false .

15-424 LECTURE NOTES ANDRÉ PLATZER

L4.26 Safety & Contracts

10. [x′ = 1 & false]true .

11. [x′ = 1 & false]false .

12. [(x′ = 1 & true)∗]true .

13. [(x′ = 1 & true)∗]false .

14. [(x′ = 1 & false)∗]true .

15. [(x′ = 1 & false)∗]false .

Exercise 6. What would happen with the bouncing ball if c < 0? Consider a variation of
the arguments in Sect. 10 where instead of the assumption in (21), you assume c < 0. Is
the formula valid? What would happen with a bouncing ball of damping c = 1?

Exercise 7. We went from (23) to (24) by removing an if-then-else. Explain how this
works and justify why it is okay to do this transformation. It is okay to focus only on
this case, even though the argument is more general.

Exercise 8 (**). Sect. 11 used a mix of a systematic and ad-hoc approach for producing an
intermediate condition that was based on solving and combining differential equations.
Can you think of a more systematic rephrasing?

References

[Asi42] Isaac Asimov. Runaround, 1942.

[DBL12] Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE, 2012.

[DLTT13] Patricia Derler, Edward A. Lee, Stavros Tripakis, and Martin Törngren.
Cyber-physical system design contracts. In Chenyang Lu, P. R. Kumar, and
Radu Stoleru, editors, ICCPS, pages 109–118. ACM, 2013.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, Proceedings of Symposia in Applied
Mathematics, volume 19, pages 19–32, Providence, 1967. AMS.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580, 1969.

[Log11] Francesco Logozzo. Practical verification for the working programmer with
codecontracts and abstract interpretation - (invited talk). In Ranjit Jhala
and David A. Schmidt, editors, VMCAI, volume 6538 of LNCS, pages 19–22.
Springer, 2011. doi:10.1007/978-3-642-18275-4_3.

[Mey92] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51,
October 1992.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/978-3-642-18275-4_3

Safety & Contracts L4.27

[PCL11] Frank Pfenning, Thomas J. Cortina, and William Lovas. Teaching imperative
programming with contracts at the freshmen level. 2011.

[Pla07] André Platzer. Differential dynamic logic for verifying parametric hybrid
systems. In Nicola Olivetti, editor, TABLEAUX, volume 4548 of LNCS, pages
216–232. Springer, 2007. doi:10.1007/978-3-540-73099-6_17.

[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.

[Pla10] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems
for Complex Dynamics. Springer, Heidelberg, 2010. doi:10.1007/

978-3-642-14509-4.

[Pla12a] André Platzer. The complete proof theory of hybrid systems. In LICS
[DBL12], pages 541–550. doi:10.1109/LICS.2012.64.

[Pla12b] André Platzer. Dynamic logics of dynamical systems. CoRR, abs/1205.4788,
2012. arXiv:1205.4788.

[Pla12c] André Platzer. Logics of dynamical systems. In LICS [DBL12], pages 13–24.
doi:10.1109/LICS.2012.13.

[Pla13] André Platzer. Teaching CPS foundations with contracts. In CPS-Ed, pages
7–10, 2013.

[PQ08] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover
for hybrid systems. In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, IJCAR, volume 5195 of LNCS, pages 171–178. Springer, 2008.
doi:10.1007/978-3-540-71070-7_15.

[Pra76] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In FOCS,
pages 109–121. IEEE, 1976.

[XJC09] Dana N. Xu, Simon L. Peyton Jones, and Koen Claessen. Static contract
checking for haskell. In Zhong Shao and Benjamin C. Pierce, editors, POPL,
pages 41–52. ACM, 2009. doi:10.1145/1480881.1480889.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/978-3-540-73099-6_17
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1109/LICS.2012.64
http://arxiv.org/abs/1205.4788
http://dx.doi.org/10.1109/LICS.2012.13
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1145/1480881.1480889

	Introduction
	The Adventures of a Bouncing Ball
	Postcondition Contracts for CPS
	Precondition Contracts for CPS
	Invariant Contracts for CPS
	Logical Formulas for Hybrid Programs
	Syntax of Differential Dynamic Logic
	Semantics of Differential Dynamic Logic
	CPS Contracts in Logic
	Identifying Requirements of a CPS
	Intermediate Conditions for CPS
	A Proof of Choice
	Proofs of Tests

