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Recent Trends in Instance Based Proving

Instance Based Methods (IMs): a family of calculi and proof
procedures for first-order logic (clauses), developed over past 15 years.

Overview
Common principles behind IMs, some calculi, proof procedures
Comparison among IMs, difference from tableaux and resolution
Ranges of applicability/non-applicability
Picking up SAT techniques

? Improvements and extensions: universal variables, equality, . . .
? Implementations and implementation techniques

Acknowledgments
Slides based on tutorial“Instance Based Methods” by Peter
Baumgartner and Gernot Stenz at TABLEAUX’05
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The Theory Strikes Back

Skolem-Herbrand-Löwenheim Theorem
∀φ is unsatisfiable iff some finite set of ground instances
{φγ1, . . . , φγn} is unsatisfiable

For refutational theorem proving (i.e. start with negated conjecture)
thus sufficient to

incrementally enumerate finite sets of ground instances, and
test each for propositional unsatisfiability.
Stop with “unsatisfiable” when the first propositionally
unsatisfiability set arrives

This has been known for a long time: Gilmore’s algorithm, DPLL
It is also a common principle behind IMs

So what’s special about IMs? Do this in a clever way!
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An early IM: the DPLL Procedure

Grounding

Propositional
DPLL

∧∀z ¬P(z, a)

Given Formula

P(f (x), x)
¬P(z, a)

Clause Form

∀x ∃y P(y , x)Preprocessing:

Outer loop:

Inner loop:
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An early IM: the DPLL Procedure

Proof found

Grounding

Propositional
DPLL

Outer Loop
STOP:

∧∀z ¬P(z, a)

Given Formula

P(f (x), x)
¬P(z, a)

Clause Form

P(f (a), a)
¬P(a, a)

Sat?

∀x ∃y P(y , x)

No

Preprocessing:

Outer loop:

Inner loop:

Yes

Continue
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An early IM: the DPLL Procedure

Grounding

Propositional
DPLL

∧∀z ¬P(z, a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z, a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)Preprocessing:

Outer loop:

Inner loop:

¬P(f (a), a)
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An early IM: the DPLL Procedure

Grounding

Propositional
DPLL

Outer LoopProof found

∧∀z ¬P(z, a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z, a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)Preprocessing:

Outer loop:

Inner loop: Sat?
No Yes

ContinueSTOP:

¬P(f (a), a)
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An early IM: the DPLL Procedure

Grounding

Propositional
DPLL

Outer LoopProof found

∧∀z ¬P(z, a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z, a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)Preprocessing:

Outer loop:

Inner loop: Sat?
No Yes

ContinueSTOP:

¬P(f (a), a)

Problems/Issues
Controlled grounding process in outer loop (irrelevant instances)
Repeat work across inner loops
Weak redundancy criterion within inner loop
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Part I: Overview of IMs

Classification of IMs and some representative calculi
Emphasis not too much on the details
Identify common principles and also differences
Comparison with resolution and tableaux
Applicability/Non-Applicability
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Development of IMs (I)

IM History
List existing methods (apologies for “forgotten” ones . . . )
Define abbreviations used later on
Provide pointer to literature
Itemize structure indicates reference relation (when obvious)
Not: table of contents of what follows
(presentation is systematic instead of historical)

DPLL – Davis-Putnam-Logemann-Loveland procedure [Davis and
Putnam, 1960], [Davis et al., 1962b], [Davis et al., 1962a],
[Davis, 1963], [Chinlund et al., 1964]

FDPLL – First-Order DPLL [Baumgartner, 2000]
ME – Model Evolution Calculus [Baumgartner and
Tinelli, 2003]
ME with Equality [Baumgartner and Tinelli, 2005]
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Development of IMs (III)

HL – Hyperlinking [Lee and Plaisted, 1992]
SHL – Semantic Hyper Linking [Chu and Plaisted,
1994]
OSHL – Ordered Semantic Hyper Linking
[Plaisted and Zhu, 1997]

PPI – Primal Partial Instantiation (1994) [Hooker et al., 2002]
“Inst-Gen” [Ganzinger and Korovin, 2003]

MACE-Style Finite Model Buiding [McCune, 1994],. . . , [Claessen and
Sörensson, 2003]

DC – Disconnection Method [Billon, 1996]
HTNG - Hyper Tableaux Next Generation
[Baumgartner, 1998]
DCTP – Disconnection Tableaux [Letz and Stenz,
2001]

Ginsberg & Parkes method [Ginsberg and Parkes, 2000]
OSHT – Ordered Semantic Hyper Tableaux [Yahya and Plaisted,

2002]
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Two-Level vs. One-Level Calculi

Two-Level Calculi
Separation between instance generation and SAT solving phase
Uses (arbitrary) propositional SAT solver as a subroutine
DPLL, HL, SHL, OSHL, PPI, Inst-Gen

Problem:
How to tell SAT solver e.g. ∀xP(x)?

unsatisfiable?

· · ·

C1(x1)

C2(x2)

Current clauses

instances
Add input clause

ground

· · ·

C1($)

C2($)

Propositionally
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Two-Level vs. One-Level Calculi

One-Level Calculi
Monolithic: one single base calculus, two modes of operation
First-order mode: base calculus clauses from input instances
Propositional mode: $-instance of clauses drives first-order mode
HyperTableaux NG, DCTP (see Part II), OSHT, FDPLL, ME

E.g. Tableaux: L1(x1)

· · ·
L2(x2)

clause instances
Current branch
unsatisfiable?

Extend by input

· · ·
L2($)

L1($)

First-order mode Propositional mode

ground

Next: two-level calculus “Inst-Gen”
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Inst-Gen

Inst-Gen is simple and elegant
Next:

Idea behind Inst-Gen
(it provides a clue to the working of two-level calculi)
Inst-Gen calculus
Comparison to resolution
Mentioning some improvements “idea behind”

References: [Ganzinger and Korovin, 2003]
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Inst-Gen - Underlying Idea (I)

Important notation:
⊥ denotes both a unique constant and a substitution that maps every
variable to ⊥.

Example (S is “current clause set”):

S : P(x , y)∨P(y , x)
¬P(x , x)

S⊥ : P(⊥,⊥)∨P(⊥,⊥)
¬P(⊥,⊥)

Analyze S⊥:
Case 1: SAT detects unsatisfiability of S⊥

Then Conclude S is unsatisfiable

But what if S⊥ is satisfied by some model, denoted by I⊥?
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Inst-Gen - Underlying Idea (II)

Main idea:
Associate to model I⊥ of S⊥ a candidate model IS of S.
Calculus goal: add instances to S so that IS becomes a model of S

Example:

S : P(x)∨Q(x)

¬P(a)

S⊥ : P(⊥)∨Q(⊥)

¬P(a)

Analyze S⊥:
Case 2: SAT detects model I⊥ = {P(⊥),¬P(a)} of S⊥
Case 2.1: candidate model IS = {¬P(a)} derived from

literals selected in S by I⊥ is not a model of S

Add “problematic” instance P(a)∨Q(a) to S to refine IS

André Platzer (CMU) 15-819M/14: Data, Code, Decisions 12 / 66



Inst-Gen - Underlying Idea (II)

Main idea:
Associate to model I⊥ of S⊥ a candidate model IS of S.
Calculus goal: add instances to S so that IS becomes a model of S

Example:

S : P(x)∨Q(x)

¬P(a)

S⊥ : P(⊥)∨Q(⊥)

¬P(a)

Analyze S⊥:
Case 2: SAT detects model I⊥ = {P(⊥),¬P(a)} of S⊥
Case 2.1: candidate model IS = {¬P(a)} derived from

literals selected in S by I⊥ is not a model of S

Add “problematic” instance P(a)∨Q(a) to S to refine IS
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Inst-Gen - Underlying Idea (III)

Clause set after adding P(a)∨Q(a)

S : P(x)∨Q(x)

P(a)∨Q(a)

¬P(a)

S⊥ : P(⊥)∨Q(⊥)

P(a)∨Q(a)

¬P(a)

Analyze S⊥:
Case 2: SAT detects model I⊥ = {P(⊥),Q(a),¬P(a)} of S⊥
Case 2.2: candidate model IS = {Q(a),¬P(a)} derived from

literals selected in S by I⊥ is a model of S
Then conclude S is satisfiable

How to derive candidate model IS?
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Inst-Gen - Model Construction

It provides (partial) interpretation for Sground for given clause set S

S : P(x)∨Q(x)

P(a)∨Q(a)

¬P(a)

Σ = {a,b}, Sground : P(b)∨Q(b)

P(a)∨Q(a)

¬P(a)

For each Cground ∈ Sground find most specific C ∈ S that can be
instantiated to Cground
Select literal in Cground corresponding to selected literal in that C

Add selected literal of that Cground to IS if not in conflict with IS
Thus, IS = {P(b),Q(a),¬P(a)}
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Inst-Gen - Summary so far

Previous slides showed the main ideas underlying the working of
calculus - not the calculus itself
The models I⊥ and the candidate model IS are not needed in the
calculus, but justify improvements
And they provide the conceptual tool for the completeness proof:
as instances of clauses are added, the initial approximation of a
model of S is refined more and more
The purpose of this refinement is to remove conflicts “A – ¬A” by
selecting different literals in instances of clauses
If this process does not lead to a refutation, every ground instance
Cγ of a clause C ∈ S will be assigned true by some sufficiently
developed candidate model
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Inst-Gen Inference Rule

Inst-Gen
C ∨L L′ ∨D

(C ∨L)θ (L′ ∨D)θ
where

(i) θ = mgu(L,L′), and
(ii) θ a proper instantiator: maps some variables to nonvariable terms

Example:

Inst-Gen
Q(x)∨P(x ,b) ¬P(a, y)∨R(y)

Q(a)∨P(a,b) ¬P(a,b)∨R(b)
where

(i) θ = mgu(P(x ,b),¬P(a, y)) = {x→a, y→b}, and
(ii) θ a proper instantiator

André Platzer (CMU) 15-819M/14: Data, Code, Decisions 16 / 66



Inst-Gen - Outer Loop

f.o. clauses
S

ground clauses
S⊥⊥ : x̄→⊥

S is unsatisfiable

S⊥ UnSAT

C ∨L L′ ∨D
(C ∨L)θ (L′ ∨D)θ

I⊥ |= L⊥,L′⊥ θ = mgu(L,L′)

S⊥ SAT I⊥ |= S⊥
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Properties and Improvements

As efficient as possible in propositional case
Literal selection in the calculus

Require “back channel” from SAT solver (output of models) to select
literals in S (as obtained in I⊥)
Restrict inference rule application to selected literals
Need only consider instances falsified in IS
Allows to extract model if S is finitely saturated
Flexibility: may change models I⊥ arbitrarily during derivation

Hyper-type inference rule, similar to Hyper Linking [Lee and
Plaisted, 1992]

Subsumption deletion by proper subclauses
Special variables: allows to replace SAT solver by solver for richer
fragment (guarded fragment, two-variable fragment)
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Resolution vs. Inst-Gen

Resolution Inst-Gen
(C ∨L) (L′ ∨D)

(C ∨D)θ
θ = mgu(L,L′)

C ∨L L′ ∨D

(C ∨L)θ (L′ ∨D)θ
θ = mgu(L,L′)

Inefficient for propositional
Length of clauses grow fast
Recombination of clauses
Subsumption deletion
A-Ordered resolution:
selection by term ordering
Difficult to extract model
Decides guarded fragment,
two-variable fragment, some
classes defined by Leitsch et
al., not Bernays-Schönfinkel

Efficient in propositional case
Length of clauses fixed
No recombination of clauses
Subsumption deletion limited
Selection based on
propositional model
Easy to extract model
Decides
Bernays-Schönfinkel class,
nothing else known yet
Current CASC-winning
provers use ResolutionAndré Platzer (CMU) 15-819M/14: Data, Code, Decisions 19 / 66



Other Two-Level Calculi (I)

DPLL - Davis-Putnam-Logemann-Loveland Procedure
Weak concept of redundancy already present (purity deletion)

PPI – Primal Partial Instantiation
Comparable to Inst-Gen, but see [Jacobs and Waldmann, 2005]

With fixed iterative deepening over term-depth bound

MACE-Style Finite Model Buiding (Different Focus)
Enumerate finite domains {0}, {0,1}, {0,1,2}, . . .
Transform clause set to encode search for finite domain model
Apply (incremental) SAT solver
Complete for finite models, not refutationally complete
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Other Two-Level Calculi (II) - HL and SHL

HL - Hyper Linking (Clause Linking)
Uses hyper type of inference rule, based on simultaneous mgu of
nucleus and electrons
Doesn’t use selection (no guidance from propositional model)

SHL - Semantic Hyper Linking
Uses “back channel” from SAT solver to guide search: find single
ground clause Cγ so that I⊥ 6|= Cγ and add it
Doesn’t use unification; basically guess ground instance, but . . .
Practical effectiveness achieved by other devices:

Start with “natural” initial interpretation
“Rough resolution” to eliminate “large” literals
Predicate replacement to unfold definitions [Lee and Plaisted, 1989]

Important reference: [Plaisted, 1994]
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Other Two-Level Calculi (III) - OSHL

OSHL - Ordered Semantic Hyper Linking
[Plaisted and Zhu, 1997], [Plaisted and Zhu, 2000]

Goal-orientation by chosing “natural” initial interpretation I0 that
falsifies (negated) theorem clause, but satisfies most of the theory
clauses
Stepwisely modify I0
Modified interpretation represented as I0(L1, . . . ,Lm)
(which is like I0 except for ground literals L1, . . . ,Lm)
Completeness via fair enumeration of modifications
Special treatment of unit clauses
Subsumption by proper subclauses
Uses A-ordered resolution as propositional decision procedure
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OSHL Proof Procedure
Input: S, I0 ;; S input clauses I0 initial interpretation
I := I0 ;; Current interpretation
G := {} ;; Current ground instances from S
while {} /∈ G do

if I |= S ;; . . . and this can be detected
then return “satisfiable”

search C ∈ S and γ
such that I 6|= Cγ ;; Instance generation

G := simplify(G,Cγ) ;; Have Cγ ∈ G after simplification
I := update(I0,G) ;; Update such that I |= G

end while
return “unsatisfiable”
How to search C and γ for given I = I0(L1, . . . ,Lm)

Guess C ∈ S and partition C = C1 ∪ C2

Let θ matcher of C1 to (L1, . . . ,Lm) (with complementary signs)
Guess δ s.th. I0(L1, . . . ,Lm) 6|= Cγ, where γ = θδ
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Search and Update in OSHL

Io = {R(a)}
(all other atoms false)

S: (1) R(a) ← (4) ←Q(a, c)
(2) P(x) ←R(a) (5) ←R(c)
(3) R(y)∨Q(x , y) ←P(x)

OSHL Refutation:
(2) I0 6|= P(x)←R(a)

I0 6|= P(a)←R(a)

(3) I0(P(a)) 6|= R(y)∨Q(x , y)←P(x)

I0(P(a)) 6|= R(y)∨Q(a, y)←P(a)

I0(P(a)) 6|= R(c)∨Q(a, c)←P(a)

(5) I0(P(a),R(c)) 6|= ←R(c)

(4) I0(P(a),Q(a, c)) 6|= ←Q(a, c)

(1) I0(¬R(a)) 6|= R(a)←
unsatisfiable
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IMs - Classification

Recall:
Two-level calculi: instance generation separated from SAT solving
– may use any SAT solver
One-level calculi: monolithic, with two modes of operation:
First-order mode and propositional mode
Developed so far:
IM Extended Calculus
DC Connection Method, Tableaux
DCTP Tableaux
OSHT Hyper Tableaux
Hyper Tableaux NG Hyper Tableaux
FDPLL DPLL
ME DPLL

Next: one-level calculus: FDPLL (simpler) / ME (better)
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Motivation for FDPLL/ME

FDPLL: lifting of propositional core of DPLL to F irst-order logic

Why? [Baumgartner, 2000]
Lift very efficient propositional DPLL techniques to first-order
From propositional DPLL: binary splitting, backjumping, learning,
restarts, selection heuristics, simplification, . . .
Not all achieved yet; simplification not in FDPLL, but in ME
Successful first-order techniques: unification, special treatment of
unit clauses, subsumption (limited)
For theorem proving: alternative to established methods
For model computation:
counterexamples, diagnosis, abduction, planning, nonmonotonic
reasoning,. . . – largely unexplored
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Contents FDPLL/ME Part

Propositional DPLL as a semantic tree method
FDPLL calculus
Model Evolution calculus
FDPLL/ME vs. OSHL
FDPLL/ME vs. Inst-Gen
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Propositional DPLL as a Semantic Tree Method

(1) A∨B (2) C ∨¬A (3) D ∨¬C ∨¬A (4) ¬D ∨¬B

{} 6|= A∨B
{} |= C ∨¬A
{} |= D ∨¬C ∨¬A
{} |= ¬D ∨¬B

〈empty tree〉

A Branch stands for an interpretation
Purpose of splitting: satisfy a clause that is currently falsified
Close branch if some clause is plainly falsified by it (?)
André Platzer (CMU) 15-819M/14: Data, Code, Decisions 28 / 66
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Propositional DPLL as a Semantic Tree Method
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André Platzer (CMU) 15-819M/14: Data, Code, Decisions 28 / 66



Propositional DPLL as a Semantic Tree Method

(1) A∨B (2) C ∨¬A (3) D ∨¬C ∨¬A (4) ¬D ∨¬B

{A,C,D} |= A∨B
{A,C,D} |= C ∨¬A
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{A,C,D} |= ¬D ∨¬B
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A

C ¬C

D ¬D

¬A

?

?
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Propositional DPLL as a Semantic Tree Method

(1) A∨B (2) C ∨¬A (3) D ∨¬C ∨¬A (4) ¬D ∨¬B

{B} |= A∨B
{B} |= C ∨¬A
{B} |= D ∨¬C ∨¬A
{B} |= ¬D ∨¬B

B

A

C ¬C

D ¬D

¬A

¬B

?

? ?

Model {B} found.
A Branch stands for an interpretation
Purpose of splitting: satisfy a clause that is currently falsified
Close branch if some clause is plainly falsified by it (?)
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Meta-Level Strategy: Lifted data structures

DPLL FDPLL

Clauses B ∨C P(x , y)∨Q(x , x)

Semantic
Trees

?

B

A ¬A

¬B

C ¬C Q(x , y)

¬P(x , y)

¬P(x , a) P(x , a)

¬Q(x , y)
?

P(x , y)
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First-Order Semantic Trees

Q(x , y)

¬P(x , y)

¬P(x , a) P(x , a)

¬Q(x , y)
?

P(x , y)

Issues:
How are variables treated?
(a) Universal?, (b) Rigid?, (c) Schematic!
What is the interpretation represented by a branch?
Clue to understanding of FDPLL (as is for Inst-Gen)
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Extracting an Interpretation from a Branch

Branch B:

P(x , y)

Interpretation IB = {...}:

A branch literal specifies the truth values for all its ground
instances, unless there is a more specific literal specifying the
opposite truth value

The order of literals does not matter
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Extracting an Interpretation from a Branch

¬P(a, b)

P(b, a)
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Extracting an Interpretation from a Branch

Branch B: Interpretation IB = {. . .}:

{

}

, ,

,

P(x , y)

P(a, b)
P(a, b)

¬P(a, y)

¬P(b, b)

¬P(a, a) P(b, a)

¬P(b, b)

A branch literal specifies the truth values for all its ground
instances, unless there is a more specific literal specifying the
opposite truth value
The order of literals does not matter
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FDPLL Calculus - Main Loop
Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

〈empty
tree〉

Init

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop
Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

unsatisfiable

Yes

?
Closed?

?

No

STOP:

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop
Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable
Select open

? ?

Closed?

STOP:

?

Yes

B

No

?
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Note: Strategy much like in inner loop of propositional DPLL:

B

branch B unsatisfiable
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Select open

Yes

IB
?

|= S
? ?

No
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FDPLL Calculus - Main Loop
Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

satisfiable

branch B unsatisfiable

Yes

IB
?

|= S
Yes

STOP:

? ?

No

Closed?

STOP:

?

No

Select open

?
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FDPLL Calculus - Main Loop
Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

branch B

satisfiable

unsatisfiable
and split B
with L and ¬L

No

Select open

Yes

IB
?

|= S

Select literal L

?

L

? ?

STOP:

?

Yes

Closed?

STOP:

No

¬L

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop
Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable
and split B
with L and ¬L

satisfiable

Select literal L
L

??

No

IB
?

|= S
Yes ? ?

Closed?

STOP:

STOP:

No

Select open

Yes¬L

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL – Model Computation Example
Computed Model (as output by Darwin implementation)

(1) train(X,Y) ; flight(X,Y). %% train from X to Y or flight...

(2) -flight(sb,X). %% no flight from sb to anywhere

(3) flight(X,Y) :- flight(Y,X). %% flight is symmetric

(4) connect(X,Y) :- flight(X,Y). %% a flight is a connection
(5) connect(X,Y) :- train(X,Y). %% a train is a connection
(6) connect(X,Z) :- connect(X,Y), %% connection is a transitive

connect(Y,Z) %% relation

+ flight(X, Y)
- flight(sb, X)
- flight(X, sb)
+ train(sb, Y)
+ train(Y, sb)
+ connect(X, Y)

André Platzer (CMU) 15-819M/14: Data, Code, Decisions 33 / 66



FDPLL – Model Computation Example
Computed Model (as output by Darwin implementation)

(1) train(X,Y) ; flight(X,Y). %% train from X to Y or flight...

(2) -flight(sb,X). %% no flight from sb to anywhere

(3) flight(X,Y) :- flight(Y,X). %% flight is symmetric

(4) connect(X,Y) :- flight(X,Y). %% a flight is a connection
(5) connect(X,Y) :- train(X,Y). %% a train is a connection
(6) connect(X,Z) :- connect(X,Y), %% connection is a transitive

connect(Y,Z) %% relation

+ flight(X, Y)
- flight(sb, X)
- flight(X, sb)
+ train(sb, Y)
+ train(Y, sb)
+ connect(X, Y)
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FDPLL Model Computation Example - Derivation

•

Clause instance used in inference: train(x , y)∨ flight(x , y)

Done.
Return “satisfiable with model {flight(x , y), . . . , connect(x , y)}”
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Model Evolution (ME) Calculus

Same motivation as for FDPLL: lift propositional DPLL to
first-order
Loosely based on FDPLL, but not really an “extension”
Extension of Tinelli’s sequent-style DPLL [Tinelli, 2002]

See [Baumgartner and Tinelli, 2003] for calculus, [?] for
implementation “Darwin”

Difference to FDPLL
Systematic treatment of universal and schematic variables
Includes first-order versions of unit simplification rules
Presentation as a sequent-style calculus, to cope with dynamically
changing branches and clause sets due to simplification
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FDPLL/ME vs. OSHL

Recall OSHL:
Incrementally modify I0
Modified interpretation represented as I0(L1, . . . ,Lm)

Find next ground instance Cγ by unifying subclause of C against
(L1, . . . ,Lm) and guess Herbrand-instantiation of rest clause, so
that I0(L1, . . . ,Lm) 6|= Cγ

FDPLL/ME
Initial interpretation I0 is a trival one (e.g. “false everywhere”)
But (L1, . . . ,Lm) is a set of first-order literals now
Find next (possibly) non-ground instance Cσ by unifying C against
(L1, . . . ,Lm) so that (L1, . . . ,Lm) 6|= Cσ
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FDPLL/ME vs. Inst-Gen

FDPLL/ME and Inst-Gen temporarily switch to propositional reasoning.
But:

Inst-Gen (and other two-level calculi)
Use the ⊥-version S⊥ of the current clause set S

⇒ Works globally on clause sets
Flexible: may switch focus all the time – but memory problem (?)

FDPLL/ME (and other one-level calculi)
Use the $-version of the current branch

⇒ Works locally in context of current branch
Not so flexible – but don’t expect memory problems:
FDPLL/ME need not keep any clause instance
DCTP needs to keep clause instances only along current branch
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Applicability/Non-Applicability of IMs

Comparison: Resolution vs. Tableaux vs. IMs
Conclusions from that
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Resolution vs. Tableaux vs. IMs

Consider a transitivity clause P(x , z)←P(x , y)∧P(y , z)

Resolution
Resolution may generate clauses of unbounded length:

P(x , z ′) ← P(x , y)∧P(y , z)∧P(z, z ′)
P(x , z ′′) ← P(x , y)∧P(y , z)∧P(z, z ′)∧P(z ′, z ′′)

- Does not decide function-free clause sets
- Complicated to extract model
+ (Ordered) Resolution very good on some classes, Equality
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Resolution vs. Tableaux vs. IMs

Consider a transitivity clause P(x , z)←P(x , y)∧P(y , z)

Rigid Variables Approaches (Tableaux, Connection Methods)
Have to use unbounded number of variants per clause:

P(x ′, z ′) ← P(x ′, y ′)∧P(y ′, z ′)
P(x ′′, z ′′) ← P(x ′′, y ′′)∧P(y ′′, z ′′)

- Weak redundancy criteria
- Difficult to exploit proof confluence

Usual calculi backtrack more than theoretically necessary
But see [Giese, 2001], [Baumgartner et al., 1999], [Beckert, 2003]

Model Elimination: goal-orientedness compensates drawback
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Difficulty with Rigid Variable Methods

Rigid variable methods “destructively” modify data structure
S: ∀x(P(x)∨Q(x))
¬P(a)
¬P(b)
¬Q(b)

(1) P(X )∨Q(X ) (2) P(X )∨Q(X )
¬P(a)

(3) P(a)∨Q(a)
¬P(a)

(5) P(a)∨Q(a)
¬P(a)
P(X ′)∨Q(X ′)
¬P(b)

(7) P(a)∨Q(a)
¬P(a)
P(b)∨Q(b)
¬P(b)
¬Q(b)

Connection method (and tableaux) proof confluent: no deadends
Difficulty to find fairness criterion due to “destructive” nature
All IMs are non-destructive – no problem here
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Resolution vs. Tableaux vs. IMs

Consider a transitivity clause P(x , z)←P(x , y)∧P(y , z)

Instance Based Methods
May need to generate and keep proper instances of clauses:

P(x , z) ← P(x , y)∧P(y , z)
P(a, z) ← P(a, y)∧P(y ,b)

- Cannot use subsumption: weaker than Resolution
- Clauses do not grow in length, no recombination of clauses:

better than Resolution, same as in rigid variables approaches
+ Need not keep variants: better than rigid variables approaches
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Applicability/Non-Applicability of IMs: Conclusions

Suggested applicability for IMs:
Near propositional clause sets
Clause sets without function symbols (except constants)
E.g. Translation from basic modal logics, Datalog
Model computation (sometimes)

Other methods (currently?) better at:
Goal orientation
Equality, theory reasoning
Many decidable fragments (Guarded fragment, two-variable
fragment)
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Part II: A Closer Look

Disconnection calculus
Theory Reasoning and Equality
Implementations and Techniques

Available Implementations
Proof Procedures
Exploiting SAT techniques
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Disconnection Tableaux
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The Disconnection Calculus(I)

Analytic tableau calculus for first order clause logic
Introduced by J.-P. Billon (1996)
Special characteristics of calculus:

No rigid variables
No variants in tableau
Proof confluence: One proof tree only, no backtracking in search
Saturated branches as indicator of satisfiability
Decision procedure for certain classes of formulae

Related methods: hyper linking, hyper tableaux, first order
Davis-Putnam . . .
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The Disconnection Calculus (II): Proof Rule Linking

Q(x) P(x ,b)

R(u, y) ¬P(a, y) S(u,w)

R(x , z)C

D
potentially complemen-
tary
literals on path

⇒ Q(x) P(x ,b)

R(u, y) ¬P(a, y)

Q(a) P(a,b)

R(u′,b) ¬P(a,b)
∗ S(u′,w ′)

R(a, z ′)

S(u,w)

R(x , z)C

D

Cσ

Dσ
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D

unifier for literals:
{x/a, y/b}
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The Disconnection Calculus (II): Proof Rule Linking

Q(x) P(x ,b)

R(u, y) ¬P(a, y) S(u,w)

R(x , z)C

D

⇒ Q(x) P(x ,b)

R(u, y) ¬P(a, y)

Q(a) P(a,b)

R(u′,b) ¬P(a,b)
∗ S(u′,w ′)

R(a, z ′)

S(u,w)

R(x , z)C

D

Cσ

Dσ

append instances with
substitution {x/a, y/b} to
path
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The Disconnection Calculus (II): Proof Rule Linking

Q(x) P(x ,b)

R(u, y) ¬P(a, y) S(u,w)

R(x , z)C

D

⇒ Q(x) P(x ,b)

R(u, y) ¬P(a, y)

Q(a) P(a,b)

R(u′,b) ¬P(a,b)
∗ S(u′,w ′)

R(a, z ′)

S(u,w)

R(x , z)C

D

Cσ

Dσ

original path closed
new open paths added

Concept of ∀-closure of branches
closure by simultaneous instantiation of all variables by the same
constant: path with P(x , y) and ¬P(z, z) is closed
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Proof Search in the Disconnection Calculus

Proof process in two phases:
An initial active path through the formula is don’t-care
nondeterministically selected
Using the links contained in the active path, instances of linked
clauses are used to build a tableau

An open tableau path may be selected don’t-care
nondeterministically, it becomes the next active path
Each link can be used only once on a path (explains the name
”disconnection”)
Absence of usable links (saturation of a path) indicates
satisfiability of the formula
Only requirement for (strong) completeness: fairness of link
selection
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An Example Proof

P(x , z)

P(b, c)

P(a,b)

¬P(a, c)

P(a, c)

¬P(a,c)
∗

¬P(a, y)

P(a, c)

¬P(a,c)
∗

¬P(a,b)

P(a,b)
∗

¬P(b, c)

P(b,c)
∗

¬P(y , c)

P(a, c)

¬P(a,c)
∗

¬P(a,b)

P(a,b)
∗

¬P(b, c)

¬P(b,c)
∗

Input Clauses ∨¬P(x , y)∨¬P(y , z)
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Variant Freeness

Two clauses are variants if they can be obtained from each other
by variable renaming
A tableau is variant-free if no branch contains literals l and k
where the clauses of l and k are variants
All disconnection tableaux are required to be variant-free
Variant-freeness provides essential pruning (weak form of
subsumption)
Vital for model generation
Implies the idea of branch saturation:
A branch is saturated if it cannot be extended in a variant-free
manner
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Failed Proof Attempts

Proof attempts may fail - what happens then?

In order to show this,
we will change one clause in the previous example: the signs are inverted

¬P(x , z)

P(b, c)

P(a,b)

¬P(a, c)

Input Clauses ∨P(x , y)∨P(y , z)

Again, we attempt to find a proof
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André Platzer (CMU) 15-819M/14: Data, Code, Decisions 51 / 66



A Saturated Open Tableau

This open tableau cannot
be closed

Indicated branch is
saturated

Saturated open branch
provides model

How to extract model?
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Instance Preserving Enumerations

Instance Preserving Enumerations: lists of literal occurrences on
a path
Path literals are partially ordered in enumeration (not unique)
Each literal must occur before all more general instances of itself
Instance preserving enumeration of a saturated open branch
implies model
Example: For the open (sub-) branch

¬P(a)

P(x)

¬P(c)

With Herbrand universe {a,b, c,d ,e} and
enumeration

[¬P(a) ¬P(c) P(x)]

the model implied is
{¬P(a),P(b),¬P(c),P(d),P(e)}
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Model Extraction

We extract an instance preserving enumeration for the open branch of
the preceding tableau:

¬P(c, b)

¬P(a, b)

P(a, c)

∨ P(a, b)

∨ P(a, b)

∨ P(a, y)

∨ P(b, y)

∨ P(b, y)

∨ P(a, y)

∨ P(x, y) ∨ P(y, z)

∨ P(y, z)

∨ P(y, z)

∨ P(y, c)

∨ P(y, c)

∨ P(b, z)

∨ P(b, c)¬P(a, c)

¬P(a, z)

¬P(a, c)

¬P(b, c)

¬P(b, z)

¬P(a, z)

¬P(x, z)

From which we get the finite Herbrand
model:
{ ¬P(c,b),¬P(a,b),P(a, c),

P(b, c),P(b,a),P(b,b),

P(a,a),¬P(c,a),¬P(c, c) }
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From which we get the finite Herbrand
model:
{ ¬P(c,b),¬P(a,b),P(a, c),

P(b, c),P(b,a),P(b,b),

P(a,a),¬P(c,a),¬P(c, c) }
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Infinite Herbrand Models

Model extraction also works for infinite Herbrand universes

Given a saturated tableau with open branch B:
The enumeration for B
¬P(f (f (f (a)))), ¬P(f (a)), P(a), P(f (f (x)))
implies a finite representation of an

infinite Herbrand model:
{¬P(f (f (f (a)))),¬P(f (a)),P(a)}, {P(f (f (s)))}
with the constraint s 6= f (a), where s
ranges over the Herbrand universe of
S.
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Completeness

Basic concept: open saturated branch represents partial model
Non-equational case: branch determines path through Herbrand
set
non-ground open branch (non-rigid) ground Herbrand set

Closed ground path corresponds to applicable link
⇔ contradicts saturation
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The Saturation Property

Saturated open branch specifies a model (only such a branch)
Model characterised as blue exception-based representation
(EBR)
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The Saturation Property
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Model: {¬P(f (f (f (a)))),¬P(f (a)),P(a)} ∪ {P(f (f (s))) : s 6= f (a)}
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The Saturation Property

Saturated open branch specifies a model (only such a branch)
Model characterised as blue exception-based representation
(EBR)

EBR for model: {P(a),¬P(f (a)),P(f (f (x))),¬P(f (f (f (a))))}
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An Example for Non-Termination

The above problem is obviously satisfiable (P true, S and Q false)
However, in general, the disconnection calculus does not
terminate
Termination fragile, depends on branch selection function
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The Problem

Here, the model is approximated, but not finitely represented
{P(x),¬S,¬Q(a),¬Q(f (a)),¬Q(f (f (a))),¬Q(f (f (f (a)))) . . .}
Observation: linking instances are subsumed by path literal P(x)

But: general subsumption does not work
What can we do?
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Link Blocking

Original idea of model characterisation:
Currently considered branch is seen as an interpretation I
If a literal L is on branch, all instances of L are considered true in I
if a conflict occurs (a link is on the branch), the link is applied and I
is modified

Consequence: Ignore clauses subsumed by I
Concept of temporary link blocking

Path subgoal L will disable all links producing literals K = Lσ
Unblocking of links occurs when a conflict involving L is resolved,
i.e. the interpretation I is changed

Similar to productivity restriction in ME
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Candidate Models

Precise criteria needed to find out whether a literal is blocking
EBRs are lists of branch literals partially sorted according to
respective specialisation
Candidate model (CM): EBR enhanced by link blockings
Blockings require a modified ordering on CMs, not necessarily
based on instantiation
Interpretation of a literal L given by CM-matcher:
the rightmost literal in CM subsuming L or ∼ L
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Link Blocking Example

The non-termination example revisited

¬S

P(x)

¬P(x)

Q(x)

¬Q(a)

P(x)

P(x)
∗ ¬S

Q(a) ¬Q(f (a)) P(f (a))

S∗

P(x) blocked

Blocked linking instanceSaturation state

Input Clauses

∨ S

∨¬S

∨¬Q(f (x))∨ P(f (x))

Use of link blocking allows termination

Largely independent of selection functions
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The non-termination example revisited

¬S

P(x)
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P(x)

P(x)
∗ ¬S

S∗P(x) blocked
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Input Clauses
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Cyclic Link Blocking

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

∨¬P(a, y)

∨ P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable clause set

A

B

two links

blocked

blocked

no link applicable
For the above clause set, using blockings no refutation can be
found
Reason: The blocking relation for the clause set is cyclic
To preserve completeness, blocking cycles must be avoided
Well-founded ordering imposed on link blockings based on branch
position
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Cyclic Link Blocking Resolved

We try again, this time with a blocking ordering

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

∨¬P(a, y)

∨ P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable clause set

A

B

not blocked

blocked

Allowing link A to be applied, we initiate a series of blockings
and unblockings that allow to refute the formula
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André Platzer (CMU) 15-819M/14: Data, Code, Decisions 64 / 66



Cyclic Link Blocking Resolved

We try again, this time with a blocking ordering

Allowing link A to be applied, we initiate a series of blockings
and unblockings that allow to refute the formula
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The Basic Idea behind Completeness

Completeness approach as in classical disconnection calculus:

saturated open tableau branch B+

=⇒
consistent path P∗ through Herbrand set

P∗ path literal in each ground clause is determined by
CM-matcher
Tricky part: There exists a matched literal in each ground clause
Partial order of CM dynamically evolving with the branch
Acyclicity of blocking relation ensures that partial order exists
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FDPLL/ME vs. DCTP - Conceptual Difference

FDPLL/ME and DCTP use propositional version of current branch to
determine branch closure. But:

DCTP
Branch is closed if it contains both L⊥ and L⊥ (two clauses involved)

Inference rule guided syntactically: find connection among branch literals

n-way branching on literals of clause instance L1 ∨ · · · ∨ Ln

Can simulate FDPLL/ME binary branching to some degree (folding up)

Need to keep clause instances along current branch

FDPLL/ME
Branch is closed if $-version falsifies some single clause

Inference rule guided semantically: find falsified clause instance

Binary branching on literals L - L taken from falsified clause instance
Can simulate n-way branching clause literals in ground case

Need not keep any clause instance, but better cache certain subclauses
(remainders) to support heuristics
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André Platzer (CMU) 15-819M/14: Data, Code, Decisions 66 / 66



In Peter Baumgartner and Christian G. Fermüller, editors,
CADE-19 Workshop: Model Computation – Principles, Algorithms,
Applications, 2003.

Martin Davis and Hilary Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, July 1960.

M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem proving.
Communications of the ACM, 5(7), 1962.

Martin Davis, George Logemann, and Donald Loveland.
A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962.

Martin Davis.
Eliminating the irrelevant from mechanical proofs.
In Proceedings of Symposia in Applied Amthematics –
Experimental Arithmetic, High Speed Computing and
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