André Platzer

aplatzer@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA

throw new NoSuchElementException();

o Overview
e First-order Real Arithmetic
@ Syntax
@ Semantics
@ Quantifier Elimination
© Grobner Bases
o Real Nullstellensatz

e Experiments

o Overview

@ Floating-point arithmetic in “first” computer Z1 [Zuse, 1937]

@ Floating-point arithmetic in “first” computer Z1 [Zuse, 1937]
@ Square root operation by micro-op algorithm Z3 [Zuse, 1941]

@ Floating-point arithmetic in “first” computer Z1 [Zuse, 1937]
@ Square root operation by micro-op algorithm Z3 [Zuse, 1941]

@ Floating-point arithmetic in “first” computer

Z1 [Zuse, 1937]
@ Square root operation by micro-op algorithm

Z3 [Zuse, 1941]
r=a—1; q=1; p=1/2;
while (2xpxr >= err) {

if (2«r — 2xq — p >= 0) {
r=2xr — 2xq — p;

q = g+p;
p =p/2;
} else {
r = 2%r;
p=p/2;

@ Floating-point arithmetic in “first” computer

Z1 [Zuse, 1937]
@ Square root operation by micro-op algorithm

Z3 [Zuse, 1941]
r=a—1; q=1; p=1/2;
while (2xpxr >= err) {

if (2«r — 2xq — p >= 0) {
r=2xr — 2xq — p;

q = g+p;
p =p/2;
} else {
r = 2%r;
p=p/2;

}
}

@loop_invariant(a = q"2+2xpxr)

Real arithmetic is used in:
@ Mathematical algorithms in real or floating-point arithmetic
@ Hybrid systems, i.e., joint discrete and continuous dynamics
@ Geometric problems

RBC Y2

L 1 n
far ST neg SB cor MA

8eoe % KeYmaera -- Prover [=)

File View Proof Options Tools About
@ 4% Proof closed &
&£ Run Simplify | ||% Goal Back| ' Reuse “ =
| e oo ECDL I

e A 4 Inner Node Stiltlslil:s.

Proof Search Strategy rRuI!s rDLOplinns | I wA2e2%p* (n - 2) Nodes:50 (]

Proof r Goals r User Constraint | 5> 0 ! Branches: 6 o
Proof | As==0 m
[Proof Tree 1= == 3
El [Invariant Initially Valid | {SB:= v 0 0AZ/(2*%h]
: + A/ b+1)*(A/S2 % epA2+ep*v00)
a:=A |/
. t:=0 [/
: R : vi=v_0_0
B B8 Body Preserves Invariant Al Eaa— O}”
B [Case 1 : \[-
nate Universal Quant {z'=v,v =3, t' =1, v>=0& t == egp}
B \JvaAZ2e=2%*hb%*(n-z)
v_0_0>=0&(t5.0=08&ep_| A
M 0< 0 hdff El
<] Il I [l]} A Il [v]
Kﬁ)’ Strategy: Applied 49 rules (13.9 se0, closed 6 goals, 0 remaining |

Regular program Specification
(e.g., hybrid system) (pre/post-conditions)
Formula in

dynamic logic

S ¢ Handling of
elqule” differential
calculus equations

Verification conditions
in real arithmetic
(=, #, <, <)

v

Decision procedures

Regular program Specification
(e.g., hybrid system) (pre/post-conditions)
Formula in

dynamic logic

S ¢ Handling of
elqule” differential
calculus equations

Verification conditions
in real arithmetic
(=, #, <, <)

v

Decision procedures

e First-order Real Arithmetic
@ Syntax
@ Semantics
@ Quantifier Elimination

@ In a formula like
(X1 — y1)2 + (%2 — y2)? > p?

how do we get “+” and “—” and “'2” and “>" to mean what we
want?

@ In a formula like
(X1 — y1)2 + (%2 — y2)? > p?

how do we get “+” and “—” and “'2” and “>" to mean what we

want?
@ Fix their meaning in the semantics and analyze the resulting logic.

@ In a formula like
(X1 — y1)2 + (%2 — y2)? > p?

how do we get “+” and “—” and “'2” and “>" to mean what we
want?
@ Fix their meaning in the semantics and analyze the resulting logic.
@ Interpreted first-order logic is like first-order logic, except that
some symbols have a fixed semantics (all interpretations agree on
the semantics of those symbols).

@ In a formula like
(X1 = y1)2 + (x2 — y2)? > p?
how do we get “+” and “—” and “'2” and “>" to mean what we
want?

@ Fix their meaning in the semantics and analyze the resulting logic.

@ Interpreted first-order logic is like first-order logic, except that
some symbols have a fixed semantics (all interpretations agree on
the semantics of those symbols).

@ Our primary focus: first-order real arithmetic FOLy

for variable x € V

for rational number r

(infix notation)
(infix notation)
(infix notation)

for variable x € V

for rational number r

(infix notation)

(infix notation)

(infix notation)

for function f/n € X of arity n > 0

F =
h>b (infix notation)
> b (infix notation)
h=10b (infix notation)
-F “not”
(FAG) “and”
(FVG) “or”
(F— G) “‘implies”
(F < Q) “equivalent/bi-implies”
Vx F “universal quantifier/forall” for x € V
Ix F “existential quantifier/exists” for x € V

F =
h>b (infix notation)
> b (infix notation)
h=10b (infix notation)
p(ti, ..., t) for predicate p/n € X of arity n > 0
-F “not”
(FAG) “and”
(FVvG) “or”
(F— G) “‘implies”
(F < Q) “equivalent/bi-implies”
Vx F “universal quantifier/forall” for x € V
Ix F “existential quantifier/exists” for x € V

Is this a formula of first-order real arithmetic? [« »]
Q@ FV(GA(H« —F)—J)

Q Vx (p(x) — 3y (p(y) A3x=r(x,y)))

Q VxVy(x>ye—x—-y>0)

Q x<yAdzx> 2

Q x>0AVy3z(x>22+y-z-5)

Q vx3dyx > x¥

Q@ IxVyx>y+nr

Q (3x-3yx >y +3.1415926) — Vx (x? > x3)

Is this a formula of first-order real arithmetic? [« »]
? FV(GA(H < —F)—J)

Q Vx (p(x) — 3y (p(y) A3x=r(x,y)))

Q VxVy(x>ye—x—-y>0)

Q x<yAdzx> 2

Q x>0AVy3z(x>22+y-z-5)

Q vx3dyx > x¥

Q@ IxVyx>y+nr

Q (3x-3yx >y +3.1415926) — Vx (x? > x3)

Is this a formula of first-order real arithmetic? [« »]
? FV(GA(H < —F)—J)
? Vx (p(x) — 3y (p(y) A 3x =r(x, y)))

Q VxVy(x>ye—x—-y>0)

Q x<yAdzx> 2

Q x>0AVy3z(x>22+y-z-5)

Q vx3dyx > x¥

Q@ IxVyx>y+nr

Q (3x-3yx >y +3.1415926) — Vx (x? > x3)

Is this a formula of first-order real arithmetic? [« »]
? FV(GA(H < —F)—J)
? Vx (p(x) — 3y (p(y) A 3x =r(x, y)))
vV YxVy(x>y—x—y>0)

Q x<yAdzx> 2

Q x>0AVy3z(x>22+y-z-5)

Q vx3dyx > x¥

Q@ IxVyx>y+nr

Q (3x-3yx >y +3.1415926) — Vx (x? > x3)

Is this a formula of first-order real arithmetic? [« »]
? FV(GA(H < —F)—J)
? Vx (p(x) — 3y (p(y) A 3x =r(x, y)))
vV YxVy(x>y—x—y>0)
V X<yAN3Izx>2?
Q x>0AVy3z(x>22+y-z-5)
Q vx3dyx > x¥
Q@ IxVyx>y+nr
Q (3x-3yx >y +3.1415926) — Vx (x? > x3)

Is this a formula of first-order real arithmetic? [« »]
? FV(GA(H < —F)—J)
? Vx (p(x) — 3y (p(y) A 3x =r(x, y)))
vV YxVy(x>y—x—y>0)
V X<yAN3Izx>2?
vV Xx>0AVy3dz(x> 2%+ y-z-5)
Q vx3dyx > x¥
Q@ IxVyx>y+nr
Q (3x-3yx >y +3.1415926) — Vx (x? > x3)

Is this a formula of first-order real arithmetic? [« »]
? FV(GA(H«< —=F)—J)
? Vx (p(x) — 3y (p(y) A 3x =r(x, y)))
vV YxVy(x>y—x—y>0)
V X<yAN3Izx>2?
vV Xx>0AVy3dz(x> 2%+ y-z-5)
x Vx3y x > x¥
Q@ IxVyx>y+nr
Q (3x-3yx >y +3.1415926) — Vx (x? > x3)

Is this a formula of first-order real arithmetic? [« »]
? FV(GA(H«< —=F)—J)
? Vx (p(x) — 3y (p(y) A 3x =r(x, y)))
vV YxVy(x>y—x—y>0)
V X<yAN3Izx>2?
vV Xx>0AVy3dz(x> 2%+ y-z-5)
x Vx3y x > x¥
? IXVyx>y+n
Q (3x-3yx >y +3.1415926) — Vx (x? > x3)

Is this a formula of first-order real arithmetic? [« »]
? FV(GA(H < —F)—J)
? Vx (p(x) — 3y (p(y) A 3x =r(x, y)))
V IXVy(x>y<—x—y>0)
V X<yAN3Izx>2?
vV Xx>0AVy3dz(x> 2%+ y-z-5)
x Vx3y x > x¥
? IXVyx>y+n
v (3x-3y x >y +3.1415926) — Vx (x2 > x3)

Q@ D=R
© / assigns relations and functions on R to all symbols in &
e function /(f) : R” — R for each function symbol f of arity n
e relation /(p) C R" for each predicate symbol p of arity n
e element /(c) € R for each constant symbol (function of arity 0)
e truth-value /(p) € {true, false} for each predicate symbol of arity O
such that
@ /(+) is addition on R
I(—) is subtraction on R
I(-) is multiplication on R
I(=) is equality on R
I(>) is the greater relation on R
I(>
I(

) is the greater-equals relation on R
r) = r for all numbers r € Q

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

Q PL

Q@ FOL

@ FOLy[+,-, =]
Q FOLg[+,-,=,<]
@ FOLg[+, -, =]
Q FOLc[+, -, =]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v' PLg decidable
Q@ FOL

© FOLy[+, -, =]
Q FOLg[+,-,=,<]
@ FOLg[+, -, =]
Q FOLc[-l-, . =]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v" PLy decidable
? FOL undecidable but semidecidable
(s] FOLn[+, -, =]
Q FOLg[+,-,=,<]
(s] FOLg[+, -, =]
Q FOLc[-l-, ° =]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v' PLg decidable
? FOL undecidable but semidecidable

x FOLy[+, -, =] not semidecidable “Peano arithmetic” [Gddel'31]
Q FOLg[+,-,=,<]
(s] FOLg[+, -, =]
@ FOLc[-l-, ° =]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v' PLg decidable
? FOL undecidable but semidecidable

x FOLy[+, -, =] not semidecidable “Peano arithmetic” [Gddel'31]
v FOLg[+, -, =, <] decidable [Tarski’51]
(s] FOLg[+, -, =]
o FOLc[+, -, =]

: X
0

Can we get rid of the quantifier without changing the semantics of the
formula?

Ix(x>2ax<Y)

: : : X
7
3

o
\}

Can we get rid of the quantifier without changing the semantics of the
formula?

I(x>2ax<Y)

o
N
SN

Can we get rid of the quantifier without changing the semantics of the
formula?

I(x>2ax<Y)
= (>2nr2<¥) border case “x = 2”

: : : X
7
3

o
\}

Can we get rid of the quantifier without changing the semantics of the
formula?

I(x>2ax<Y)
= (>2nr2<¥) border case “x = 2”
1

v (¥senl <l border case “x =

0 2 241
2

Can we get rid of the quantifier without changing the semantics of the
formula?

el
ol

I(x>2ax<Y)

2>2nr2<) border case “x = 2
(T s2p1 <1 17
(Bt

border case “x = -

3)
2+ 3 7 . H 13
>2A < 1) intermediate case “x =

< <

—o0 0 2 241

2

Can we get rid of the quantifier without changing the semantics of the
formula?

ol
ol

Ix(x>2ax<Y)

= (2>2r2<1)) border case “x = 2

17 17 _ 17 “y _ 17»
Vo (g >2AN5 < 7) border case “x = 5

2+1 2+E 17 . H ‘“ 2+Eu
V(=% >2AN—=> < 5) intermediate case “x = —*
Vo (—oo>2AN -0 < %) extremal case “x = — ”

—00 0 2 2117 17 00

Can we get rid of the quantifier without changing the semantics of the
formula?

Ix(x>2ax<Y)

= (2>2r2<1)) border case “x = 2

v (¥s>aenlil <l border case “x =

\ (2+2?7 > 2N 2’;% < 1) intermediate case “x = 22% ’
Vo (—oo>2AN -0 < % extremal case “x = — o0”

Vo (c0>2A00< ¥ extremal case “x = o0”

2417 17 o0

Can we get rid of the quantifier without changing the semantics of the

formula?

< < < < |

Ix(x>2Ax<)
(2>2r2<¥)

border case “x = 2”

border case “x = %

. . 24 17
intermediate case “x = —3-"
extremal case “x = — 0"
extremal case “x = o0”
evaluate

Jy(y >0A1—x—1.83x%+1.66x3 > y)

Jy(y >0A1—x—1.83x%+1.66x3 > y)

Jy(y >0A1—x—1.83x%+1.66x3 > y)

0.75<xAx<068Vvx>117

A first-order theory admits quantifier elimination if to each formula ¢, a
quantifier-free formula QE(¢) can be effectively associated that is
equivalent (i.e., ¢ — QE(¢) is valid) and has no other free variables.
The operation QE is further assumed to evaluate ground formulas (i.e.,
without variables), yielding a decision procedure for this theory.

A first-order theory admits quantifier elimination if to each formula ¢, a
quantifier-free formula QE(¢) can be effectively associated that is
equivalent (i.e., ¢ — QE(¢) is valid) and has no other free variables.
The operation QE is further assumed to evaluate ground formulas (i.e.,
without variables), yielding a decision procedure for this theory.

FOLRr admits quantifier elimination and is decidable.

A first-order theory admits quantifier elimination if to each formula ¢, a
quantifier-free formula QE(¢) can be effectively associated that is
equivalent (i.e., ¢ — QE(¢) is valid) and has no other free variables.
The operation QE is further assumed to evaluate ground formulas (i.e.,
without variables), yielding a decision procedure for this theory.

FOLRr admits quantifier elimination and is decidable.

(Time and space) complexity of QE for R is doubly exponential in the
number of quantifier (alternations).

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v' PLg decidable
? FOL undecidable but semidecidable

x FOLy[+, -, =] not semidecidable “Peano arithmetic” [Gddel'31]
v FOLg[+, -, =, <] decidable [Tarski’51]
(s] FOLg[+, -, =]
o FOLc[+, -, =]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v' PLg decidable
? FOL undecidable but semidecidable

x FOLy[+, -, =] not semidecidable “Peano arithmetic” [Gddel'31]
v FOLg[+, -, =, <] decidable [Tarski’51]

x FOLg[+, -, =] not even semidecidable [Robinson’49]

Q FOLc[-l-, . =]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v' PLg decidable

? FOL undecidable but semidecidable

x FOLy[+, -, =] not semidecidable “Peano arithmetic” [Gddel'31]
v FOLg[+, -, =, <] decidable [Tarski’51]

x FOLg[+, -, =] not even semidecidable [Robinson’49]

v' FOL¢[+, -, =] decidable [Tarski’51,Chevalley’51]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v" PLy decidable

? FOL undecidable but semidecidable

x FOLy[+, -, =] not semidecidable “Peano arithmetic” [Gddel'31]
v FOLg[+, -, =, <] decidable [Tarski’51]

x FOLg[+, -, =] not even semidecidable [Robinson’49]

v' FOL¢[+, -, =] decidable [Tarski’51,Chevalley’51]
@ FOLy[+,=,2/,3],..]
© FOLg[+,-, exp,=, <]
© FOLg[+,,sin,=, <]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v" PLy decidable
? FOL undecidable but semidecidable

x FOLy[+, -, =] not semidecidable “Peano arithmetic” [Gddel'31]
v' FOLg[+, -, =, <] decidable [Tarski’51]
x FOLg[+, -, =] not even semidecidable [Robinson’49]

v' FOL¢[+, -, =] decidable [Tarski’51,Chevalley’51]

v FOLy[+,=,2],3|,...] decidable “Presburger arithmetic”
© FOLg[+,-, exp,=, <]

© FOLg[+,,sin,=, <]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v
?

oSN N XN X

PL, decidable

FOL undecidable but semidecidable

FOLy[+, -, =] not semidecidable “Peano arithmetic” [Gddel’31]
FOLg[+, -, =, <] decidable [Tarski’51]

FOLg[+, -, =] not even semidecidable [Robinson’49]

FOLc¢[+, -, =] decidable [Tarski’51,Chevalley’51]

FOLy[+, =, 2|, 3|, ...] decidable “Presburger arithmetic”

? FOLg[+, -, exp, =, <] unknown

FOLg[+, -, sin, =, <]

(Validity of) which of the following logics is
decidable/semidecidable/undecidable/not semidecidable? [« >]

v
?

N N N

X

PLy decidable

FOL undecidable but semidecidable

FOLy[+, -, =] not semidecidable “Peano arithmetic” [Gddel'31]
FOLg[+, -, =, <] decidable [Tarski’51]

FOLg[+, -, =] not even semidecidable [Robinson’49]

FOLc[+, -, =] decidable [Tarski’51,Chevalley’51]

FOLn[+, =, 2/, 3|, ...] decidable “Presburger arithmetic”
FOLg[+, -, exp, =, <] unknown

FOLg[+, -, sin, =, <] not even semidecidable

@ Commutative group (R, +): VxVyVzx+ (y +2)=(x+y)+ 2

@ Commutative group (R, +): VxVyVzx+ (y +2)=(x+y)+ 2
© Neutral Yxx +0 = x

@ Commutative group (R, +): VxVyVzx+ (y +2)=(x+y)+ 2
© Neutral Yxx +0 = x
Q InverseVx3Iyx+y=0

@ Commutative group (R, +): VxVyVzx+ (y +2)=(x+y)+ 2
© Neutral Vxx +0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

@ Commutative group (R, +): VxVyVzx+ (y +2)=(x+y)+ 2
© Neutral Vxx +0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z

@ Commutative group (R, +): VxVyVzx+ (y +2)=(x+y)+ 2
© Neutral Vxx +0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z
© Neutral Vx x -1 = x

@ Commutative group (R, +): VXVyVzx+ (y+2) = (x+y)+ z
© Neutral Vxx +0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z
© Neutral Vx x -1 = x

@ InverseVx(x #0 — Jyx-y=1)

@ Commutative group (R, +): VXVyVzx+ (y+2) = (x+y)+ z
© Neutral Vxx +0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-2)=(x-y) -z
© Neutral Vx x -1 = x

@ InverseVx(x #0 — Jyx-y=1)

@ AbelianVxVy (x-y =y-x)

@ Commutative group (R, +): VXVyVzx+ (y+2) = (x+y)+ z
© Neutral Vxx +0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z
© Neutral Vx x -1 = x

@ InverseVx(x #0 — Jyx-y=1)

@ AbelianVxVy (x-y =y-x)

© Distributive VxVyVz(x - (y +2) = (x-y) + (x - 2))

@ Commutative group (R, +): VxVyVzx+(y +2)=(x+y)+z
© Neutral Vxx +0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z
© Neutral Vx x -1 = x

@ InverseVx(x #0 — Jyx-y=1)

@ AbelianVxVy (x-y =y-x)

© Distributive VxVyVz(x - (y +2) = (x-y) + (x - 2))

@ Transitive VxVyVz(x >y Ay >z — x> 2)

@ Commutative group (R, +): VxVyVzx+(y +2)=(x+y)+z
@ Neutral Vxx + 0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z
© Neutral Vx x -1 = x

@ InverseVx(x #0 — Jyx-y=1)

@ AbelianVxVy (x-y =y-x)

© Distributive VxVyVz(x - (y +2) = (x-y) + (x - 2))

@ Transitive VxVyVz(x > yAy >z — x> 2)

@ Antisym. VxVy(x >y Ay >x—x=y)

@ Commutative group (R, +): VxVyVzx+(y +2)=(x+y)+z
@ Neutral Vxx + 0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z
© Neutral Vx x -1 = x

@ InverseVx(x #0 — Jyx-y=1)

@ AbelianVxVy (x-y =y-x)

© Distributive VxVyVz(x - (y +2) = (x-y) + (x - 2))

@ Transitive VxVyVz(x >y Ay >z — x> 2)

@ Antisym. VxVy(x >y Ay >x—x=y)

@ Total VxVy (x > yVy > x)

@ Commutative group (R, +): VxVyVzx+(y +2)=(x+y)+z
@ Neutral Vxx + 0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z
© Neutral Vx x -1 = x

@ InverseVx(x #0 — Jyx-y=1)

@ AbelianVxVy (x-y =y-x)

© Distributive VxVyVz (x - (y +2) = (x - ¥) + (x - 2))

@ Transitive VxVyVz(x >y Ay >z — x> 2)

@ Antisym. VxVy(x >y Ay >x—x=y)

@ Total VxVy (x > yVy > x)

@® Additive VxVyVz(x >y - x+2z>y+2)

@ Commutative group (R, +): VxVyVzx+(y +2)=(x+y)+z
@ Neutral Vxx + 0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z
© Neutral Vx x -1 = x

@ InverseVx(x #0 — Jyx-y=1)

@ AbelianVxVy (x-y =y-x)

© Distributive VxVyVz(x - (y +2) = (x-y) + (x - 2))

@ Transitive VxVyVz(x >y Ay >z — x> 2)

@ Antisym. VxVy(x >y Ay >x—x=y)

@ Total VxVy (x > yVy > x)

@® Additive VxVyVz(x >y - x+2z>y+2)

@ Positive VxVy (x >0Ay >0 — xy >0)

@ Commutative group (R, +): VxVyVzx+(y +2)=(x+y)+z
@ Neutral Vxx + 0 = x

Q InverseVx3Iyx+y=0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},): VxVyVzx-(y-z)=(x-y) -z
© Neutral Vxx-1=x

@ InverseVx(x #0 — Jyx-y=1)

@ AbelianVxVy (x-y =y-x)

© Distributive VxVyVz(x - (y +2) = (x-y) + (x - 2))

@ Transitive VxVyVz(x > yAy >z — x> 2)

@ Antisym. VxVy(x >y Ay >x—x=y)

@ Total VxVy (x > yVy > x)

@® Additive VxVyVz(x >y - x+2z>y+2)

@ Positive VxVy (x >0Ay >0 — xy >0)

@ Sup “Non-empty subsets with upper bounds have supremum”

What is a good set of first-order axioms for the reals R?

What is a good set of first-order axioms for the reals R?

LetT be a countable set of first-order formulas.
I has a model = T has an infinite countable model
“first-order logic cannot distinguish different infinities”

What is a good set of first-order axioms for the reals R?

LetT be a countable set of first-order formulas.
I has a model = T has an infinite countable model
“first-order logic cannot distinguish different infinities”

The reals cannot be characterized (up to isomorphism) in first-order
logic (nor any other infinite structure really, not even in the generated
case)

What is a good set of first-order axioms for the reals R?

LetT be a countable set of first-order formulas.
I has a model = T has an infinite countable model

“first-order logic cannot distinguish different infinities”

The reals cannot be characterized (up to isomorphism) in first-order
logic (nor any other infinite structure really, not even in the generated

case)

But the first-order “view” of the reals is still fairly amazing

Field R is a (formally) real field iff, equivalently:
@ -1 is notasum of squares in R.

Field R is a (formally) real field iff, equivalently:
@ - 1is notasum of squares in R.
@ Forevery xy,...,xp € R, 1L, x> =0 implies x; = - -- = x, = 0.

Field R is a (formally) real field iff, equivalently:

@ - 1is notasum of squares in R.

@ Forevery xy,...,xp € R, 1L, x> =0 implies x; = - -- = x, = 0.
© R admits an ordering that makes R an ordered field.

Field R is real-closed field iff, equivalently:

@ Ris an ordered field where every positive element is a square and
every univariate polynomial in R[X] of odd degree has a root in R
(then this order is, in fact, unique).

Field R is real-closed field iff, equivalently:

@ Ris an ordered field where every positive element is a square and
every univariate polynomial in R[X] of odd degree has a root in R
(then this order is, in fact, unique).

© Ris not algebraically closed but its field
extension R[v/—1] = RJi]/(i® + 1) is algebraically closed.

Field R is real-closed field iff, equivalently:

@ Ris an ordered field where every positive element is a square and
every univariate polynomial in R[X] of odd degree has a root in R
(then this order is, in fact, unique).

© Ris not algebraically closed but its field
extension R[v/—1] = RJi]/(i® + 1) is algebraically closed.

© Ris not algebraically closed but its algebraic closure is a finite
extension, i.e., finitely generated over R.

Field R is real-closed field iff, equivalently:

@ Ris an ordered field where every positive element is a square and
every univariate polynomial in R[X] of odd degree has a root in R
(then this order is, in fact, unique).

© Ris not algebraically closed but its field
extension R[v/—1] = R[i]/(i® + 1) is algebraically closed.

© Ris not algebraically closed but its algebraic closure is a finite
extension, i.e., finitely generated over R.

© R has the intermediate value property, i.e., R is an ordered field
such that for any polynomial p € R[X] with a,b € R,a < b and
p(a)p(b) < 0, there is a ¢ with a < ¢ < b such that p(¢) = 0.

Field R is real-closed field iff, equivalently:

@ Ris an ordered field where every positive element is a square and
every univariate polynomial in R[X] of odd degree has a root in R
(then this order is, in fact, unique).

© Ris not algebraically closed but its field
extension R[v/—1] = RJi]/(i® + 1) is algebraically closed.

© Ris not algebraically closed but its algebraic closure is a finite
extension, i.e., finitely generated over R.

© R has the intermediate value property, i.e., R is an ordered field
such that for any polynomial p € R[X] with a,b € R,a < b and
p(a)p(b) < 0, there is a ¢ with a < ¢ < b such that p(¢) = 0.

© Ris areal field such that no proper algebraic extension is a
formally real field.

Example (Real-closed fields)
@ Real numbers R.

Example (Real-closed fields)
@ Real numbers R.

@ Real algebraic numbers Q N R, that is, real numbers in the
algebraic closure of Q, i.e., real numbers that are roots of a
non-zero polynomial with rational or integer coefficients

p(r) = 0 for some p € Q[X] \ {0}

Example (Real-closed fields)
@ Real numbers R.

@ Real algebraic numbers Q N R, that is, real numbers in the
algebraic closure of Q, i.e., real numbers that are roots of a
non-zero polynomial with rational or integer coefficients

p(r) = 0 for some p € Q[X] \ {0}

@ Computable numbers, i.e., those that can be approximated by a
computable function up to any desired precision.

Example (Real-closed fields)
@ Real numbers R.

@ Real algebraic numbers Q N R, that is, real numbers in the
algebraic closure of Q, i.e., real numbers that are roots of a
non-zero polynomial with rational or integer coefficients

p(r) = 0 for some p € Q[X] \ {0}

@ Computable numbers, i.e., those that can be approximated by a
computable function up to any desired precision. = lives here!

Example (Real-closed fields)
@ Real numbers R.

@ Real algebraic numbers Q N R, that is, real numbers in the
algebraic closure of Q, i.e., real numbers that are roots of a
non-zero polynomial with rational or integer coefficients

p(r) = 0 for some p € Q[X] \ {0}

@ Computable numbers, i.e., those that can be approximated by a
computable function up to any desired precision. = lives here!

@ ZFC-Definable numbers, i.e., those real numbers a € R for which
there is a first-order formula ¢ in set theory with one free variable
such that a is the unique real number for which ¢ holds true.

I oiff I(x) = a

@ Commutative group (R, +): VxVyVzx+(y+2)=(x+y)+z
@ Neutral Vxx+0 = x

© InverseVxIyx+y =0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},-): VxVyVzx-(y-z)=(x-y) -z
Q Neutral Vxx -1 =x

@ InverseVx(x #0 — Jyx-y=1)

Q AbelianVxVy(x-y=y-x)

© Distributive VxVyVz (x - (y +2) = (x-y) + (x - 2))

© 3xi .3 (-1=x2+ - +x2) forany n

@ Vxvy(x <yAp(x)p(y) <0 —3Jz(x <z<yAp(z)=N0)) for
polynomial p (intermediate value property)

@ Commutative group (R, +): VxVyVzx+(y+2)=(x+y)+z
@ Neutral Vxx+0 = x

© InverseVxIyx+y =0

©Q AbelianVxVy (x +y =y + x)

© Commutative group (R \ {0},-): VxVyVzx-(y-z)=(x-y) -z
Q Neutral Vxx -1 =x

@ InverseVx(x #0 — Jyx-y=1)

Q AbelianVxVy(x-y=y-x)

© Distributive VxVyVz (x - (y +2) = (x-y) + (x - 2))

© 3xi .3 (-1=x2+ - +x2) forany n

@ xvVy(x<yAp(x)p(y) <0—3z(x<z<yAp(z)=N0)) for
polynomial p (intermediate value property)

1930

1965
1973
1975

1983
1993
2003

2005

First quantifier elimination procedure by Tarski
(Non-elementary)

Buchberger introduces Grdébner bases
Real Nullstellensatz and Positivstellensatz by Stengle

Cylindrical algebraic decomposition (CAD) by Collins
(Doubly exponential)

Cohen-Hérmander elimination procedure
Virtual substitution by Weispfenning

Parrilo introduces semidefinite programming for the Posi-
tivstellensatz
(Later refined by Harrison)

Tiwari’s polynomial simplex method

1930

1965
1973
1975

1983
1993
2003

2005

First quantifier elimination procedure by Tarski
(Non-elementary)

Buchberger introduces Grébner bases
Real Nullstellensatz and Positivstellensatz by Stengle

Cylindrical algebraic decomposition (CAD) by Collins
(Doubly exponential)

Cohen-Hérmander elimination procedure
Virtual substitution by Weispfenning

Parrilo introduces semidefinite programming for the Posi-
tivstellensatz
(Later refined by Harrison)

Tiwari’s polynomial simplex method

e Grobner Bases

v

Verification conditions
(=, #, <,)

Inequalities and disequations?

v

Verification conditions Systems of
(=, # <, <) equations (=)

Inequalities and disequations can be eliminated:
f#9g = 3z.(f—9g)z=1
f>g = 3z.f-g=2°
f>g = 3z.(f—-g)z22 =1

v

Verification conditions Systems of
(=, # <, <) equations (=)

Goal: prove unsatisfiability of:

Ati=0
i

v

Verification conditions Systems of
(=, # <, <) equations (=)

Witnesses for unsatisfiability:

(Zs,-t,-) =1 =\t =0 unsatisfiable
i i

How to determine coefficients s;?

v

Verification conditions Systems of
(=, # <, <) equations (=)

Witnesses for unsatisfiability:

(Zs,-t,-) =1 =\t =0 unsatisfiable
i i

How to determine coefficients s;?

Need some more notation:

@ Ideal generated by {ti, ..

S C QX ..., Xal:

(t17---7tn) = {Zsiti|s1a---a3n€Q[X17---»Xn]}
i

v

Verification conditions
(=, #, <,)

—>

Systems of
equations (=)

—» 1€ (ty, ... th) ?

Grébner bases to solve the ideal membership problem:

@ Monomial ordering <: admissible total well-founded ordering on
monomials (Gives the order in which to try eliminating monomials)

@ Reduction of a polynomial sw.r.t. B= {f,... t}:

S = S+ ut
= S+ Uity + Uzt
—
~ redgs

@ Bis called Grobner basis if redg s = 0 for all s € (B)

\

Verification conditions Systems of
(=, # <, <) equations (=)

—» 1€ (ty, ... th) ?

Grébner bases to solve the ideal membership problem:

@ Monomial ordering <: admissible total well-founded ordering on
monomials (Gives the order in which to try eliminating monomials)

@ Reduction of a polynomial sw.r.t. B= {f,... t}:

S = S+ ut
= S+ Uity + Uzt
—
~ redgs

@ Bis called Grobner basis if redg s = 0 for all s € (B)

\

Verification conditions Systems of Grobner
(=, # <, <) equations (=) bases B

—»red 1 =07

Grébner bases to solve the ideal membership problem:
@ Monomial ordering <: admissible total well-founded ordering on
monomials
@ < admissible iff its reflexive closure < satisfies
@ XY < X*then XV X* < XrX* forall v, u, A € N”
Q XV|X*then X¥ < X+ forall v, u € N"

\

Verification conditions Systems of Grobner
(=, # <, <) equations (=) bases B

—»red 1 =07

Method is sound and complete over complex numbers:

—Ix € C": \ti(x) =0 iff 1€ (ty,... 1)

i

What about the real numbers?

Method is sound and complete over complex numbers:

—Ix € C": \ti(x) =0 iff 1€ (ty,... 1)

i

= Method sound but cannot be complete over reals:

eg. x>+1=0 is unsatisfiable
but (x®+1) does not contain 1

Next: an extension that is complete over the reals

Finite set G C k[Xj, ..., Xp] with (G) = I'is Grébner basis of ideal / iff,
equivalently:

@ Reduction with respect to G gives 0 for any p € .

Finite set G C k[Xj, ..., Xp] with (G) = I'is Grébner basis of ideal / iff,
equivalently:

@ Reduction with respect to G gives 0 for any p € .
@ redgp=0iffpel.

Finite set G C k[Xj, ..., Xp] with (G) = I'is Grébner basis of ideal / iff,
equivalently:

@ Reduction with respect to G gives 0 for any p € .
@ redgp=0iffpel.
© Reduction with respect to G gives a unique remainder.

Finite set G C k[Xj, ..., Xp] with (G) = I'is Grébner basis of ideal / iff,
equivalently:

@ Reduction with respect to G gives 0 for any p € .
@ redgp=0iffpel.
© Reduction with respect to G gives a unique remainder.

Every ideal in the ring k[X1, . .., Xn] of multivariate polynomials over a
field k is finitely generated.

Finite set G C k[Xj, ..., Xp] with (G) = I'is Grébner basis of ideal / iff,
equivalently:

@ Reduction with respect to G gives 0 for any p € .
@ redgp=0iffpel.
© Reduction with respect to G gives a unique remainder.

Every ideal in the ring k[X1, . .., Xn] of multivariate polynomials over a
field k is finitely generated.

Can be computed effectively by Buchberger’s algorithm

GB(finite F < K[Xi, ..., X]):
@ choose f,gc F

. lem(£(f) £(9)) ¢ _ lem(e(),(g))
Q@ s:="m - = 9 |
let the leading terms /(...) cancel by construction

©Q F:=FuU{redrs}

GB(finite F k[X1,. .., Xy)):

@ choose f,ge F

. lem(£(f) £(9)) ¢ _ lem(e(),(g))
Q@ s:="m - = 9 |
let the leading terms /(...) cancel by construction

©Q F:=FuU{redrs}

GB(finite F < K[Xi, ..., X]):
@ choose f,gc F

Q s .= mlUNUG) ¢ lem(UN)Ug))
: e(f) «g) _
let the leading terms /(...) cancel by construction

©Q F:=FuU{redes}

GB(finite F < K[Xi, ..., X]):
@ choose f,gc F

. lem(£(f) £(9)) ¢ _ lem(e(),(g))
Q@ s:="m - = 9 |
let the leading terms /(...) cancel by construction

©Q F:=FuU{redrs}

GB(finite F < K[Xi, ..., Xa]):
@ choose f,g € F

Q s.= mUnNUD) lemNUI) g U9) _f U g
\ (1) e ged(e(f),€(9)) -~ ged(£(),6(9))
let the leading terms /(...) cancel by construction

©Q F:=FuU{redrs}

£(9)
f— Geatn.oan9

4(9)
© s:= g i
Example (GB({f = x? + 2xy?, g = xy +2y® — 1} with x > y lex)

S(f,9) =

£(9)
f— Geatn.oan9

4(9)
© s:= g i
Example (GB({f = x? + 2xy?, g = xy +2y® — 1} with x > y lex)

X x?
S(f,9) = L+ 2x7%) - (o +2/° 1)

£(9)
f— Geatn.oan9

4(9)
© s:= g i
Example (GB({f = x? + 2xy?, g = xy +2y® — 1} with x > y lex)
2
S(f,9) = L+ 2x7%) - (o +2/° 1)
= x2y +2xy° — (x?y + 2xy° — x)

£(9)
f— Geatn.oan9

4(9)
© s:= g i
Example (GB({f = x? + 2xy?, g = xy +2y® — 1} with x > y lex)
X X2
S(f,9) = L+ 2x7%) - (o +2/° 1)

= x2y +2xy° — (x?y + 2xy° — x)
=x=h ~ G={f,g,h}

£(9)
f— Geatn.oan9

2(g)
Q s:= g)
Example (GB({f = x2 +2xy?, g = xy +2y% — 1} with x = y lex)
2
S(f, g)_ (x + 2xy?) — (xy+2y3—1)

=X y+2xy —(x y+2xy3—x)
=x=h ~ G={f,g,h}

S(g.h) = (o +2y° = 1) - ()

£(9)
f— Geatn.oan9

2(g)
Q s:= g)
Example (GB({f = x2 +2xy?, g = xy +2y% — 1} with x = y lex)
2
S(f, g)_ (x + 2xy?) — (xy+2y3—1)

=X y+2xy —(x y+2xy3—x)
=x=h ~ G={f,g,h}

X X
S(g.h) = (o +2y° = 1) - ()
=xy+2y%—1—xy

£(9)
f— Geatn.oan9

2(g)
Q s:= g)
Example (GB({f = x2 +2xy?, g = xy +2y% — 1} with x = y lex)
2
S(f, g)_ (x + 2xy?) — (xy+2y3—1)

=X y+2xy —(x y+2xy3—x)
=x=h ~ G={f,g,h}

S(g.h) = (o +2y° = 1) - ()

=xy+2y%—1—xy
=2y 1= ~ G={fghe}

£(9)
f— Geatn.oan9

2(g)
Q s:= g)
Example (GB({f = x2 +2xy?, g = xy +2y% — 1} with x = y lex)
2
S(f, g)_ (x + 2xy?) — (xy+2y3—1)

=X y+2xy —(x y+2xy3—x)
=x=h ~ G={f,g,h}

S(g.h) = (o +2y° = 1) - ()

=xy+2y%—1—xy
=2y 1= ~ G={fghe}

S(f, h) =)—):(xz +oxy?) - X;(x)

£(9)
f— Geatn.oan9

4(g)
Q s:= g aey
Example (GB({f = x2 +2xy?, g = xy +2y% — 1} with x = y lex)
2
S(f,g) = = (x + 2xy?) — (xy+2y3—1)
=X y+2xy —(x y+2xy3—x)
=x=h ~ G={f,g,h}
X X
S(g.h) = (o +2y° = 1) - ()
=xy+2y%—1—xy
=2y 1= ~ G={fghe}

S(f, h) =)—):(xz +oxy?) - X;(x)

= x? 4+ 2xy? — x?

£(9)
f— Geatn.oan9

4(g)
Q s:= g aey
Example (GB({f = x2 +2xy?, g = xy +2y% — 1} with x = y lex)
2
S(f,g) = = (x + 2xy?) — (xy+2y3—1)
=X y+2xy —(x y+2xy3—x)
=x=h ~ G={f,g,h}
X X
S(g.h) = (o +2y° = 1) - ()
=xy+2y%—1—xy
=2y 1= ~ G={fghe}

S(f, h) =)—):(xz +oxy?) - X;(x)

= x? 4+ 2xy? — x?

= 2Xi2

£(9)
f— Gean.aen9d

4(g)
Q s:= g aey
Example (GB({f = x2 +2xy?, g = xy +2y% — 1} with x = y lex)
2
S(f,g) = = (x + 2xy?) — (xy+2y3—1)
=X y+2xy —(x y+2xy3—x)
=x=h ~ G={f,g,h}
X X
S(g.h) = (o +2y° = 1) - ()
=xy+2y%—1—xy
=2y 1= ~ G={fghe}

S(f, h) =)—):(xz +oxy?) - X;(x)

= x? 4+ 2xy? — x?

= 2xi2 = Zizh o () bi redﬁ

£(9)
f— Gean.aen9d

4(g)
Q s:= g aey
Example (GB({f = x2 +2xy?, g = xy +2y% — 1} with x = y lex)
2
S(f,g) = = (x + 2xy?) — (xy+2y3—1)
=X y+2xy —(x y+2xy3—x)
=x=h ~ G={f,g,h}
X X
S(g.h) = (o +2y° = 1) - ()
=xy+2y%—1—xy G={x,2y® - 1}!
=2y 1= ~ G={fghe}

S(f, h) =)—):(xz +oxy?) - X;(x)

= x? 4+ 2xy? — x?

= 2xi2 = Zizh o () bi redﬁ

© Real Nulistellensatz

Method is sound and complete over complex numbers:

—Ix e C": \ti(x)=0 iff 1€ (ty,... 1)

i

= Method sound but cannot be complete over reals:

eg. x>+1=0 is unsatisfiable
but (x®+1) does not contain 1

Next: an extension that is complete over the reals

-Ix e R": A\ ti(x) =0 iff

I

3s1,...,5k €R[X1,..., Xm]: 1+ 82 +---+s2€(ty,..., 1)

v

Verification conditions Systems of Grébner
(=, # <,) equations (=) bases B

—» red 1 =07

-Ix e R": A\ ti(x) =0 iff

I

3s1,...,5k €R[X1,..., Xm]: 1+ 82 +---+s2€(ty,..., 1)

red(1+s)=07?
A

Pick sum of
+ squares s

Verification conditions Systems of Grébner T =07
(=, # <,) equations (=) bases B = 07

-Ix e R": A\ ti(x) =0 iff

I

3s1,...,5k €R[X1,..., Xm]: 1+ 82 +---+s2€(ty,..., 1)

How to pick sum of squares s? + - - - + §2?

red(1+s)=07?
A

Pick sum of
+ squares s

Verification conditions Systems of Grébner T =07
(=, # <,) equations (=) bases B = 07

Observation: [Parrilo, 2003]
Sums of squares can be represented as scalar products

E.g.

t
2 -1
seceer == (59)

red(1+s)=07?
A

Pick sum of
+ squares s

Verification conditions Systems of Grébner T =07
(=, # <,) equations (=) bases B = 07

Every sum of squares can be represented as p' Xp, where
p € R[Xi,...,Xn]* and X is positive semi-definite (and vice versa).

Matrix X is called positive semi-definite if
@ X is symmetric (i.e., X! = X)
Q x!Xx >O0forall x € R".

red(1+s)=07?
A

Pick sum of
+ squares s

Verification conditions Systems of Grébner T =07
(=, # <,) equations (=) bases B = 07

Every sum of squares can be represented as p' Xp, where
p € R[Xi,...,Xn]* and X is positive semi-definite (and vice versa).

Matrix X is called positive semi-definite if
@ X is symmetric (i.e., X! = X)
Q x!Xx>o0forall x e R".
Solvablg _with red(l+s)=07
se(r?ni‘-)gzlf?r:/ife? Consttraints Pick symbolic sum d*
< | red(1+p0p) =0 of squares pQp Pick sym of

+ \ sgquares s
/)
Verification conditions Systems of Grébner 7@/1{07

(=, # <,) equations (=) bases B

Constraint solving by semidefinite programming
(convex optimisation):
@ Has been used successfully in combination with Positivstellensatz
[Parrilo, 2003; Harrison, 2007]

Solvable with red(1+s)=07?
Q positive , . . A
semi-definite? Consttralnts Pick symbolic sum

< | red(1+p0p) =0 of squares pQp Pick sym of

+ \ sgquares s
/)
Verification conditions Systems of Grébner ;»/Fed’I{O?

(=, # <,) equations (=) bases B

Prove unsatisfiability of:

X>y,z>0,yz>xz

Prove unsatisfiability of:
X>y,z>0,yz>xz
Translated to system of equations:

X—y=a z="b (yz—xz)c® =1

Prove unsatisfiability of:
X>y,z>0,yz>xz
Translated to system of equations:
X—y=a z="b (yz—xz)c® =1
Corresponding Grébner basis:

B = {2 —x+y, b? -z xzc® — yzc® + 1}

Prove unsatisfiability of:
X>y,z>0,yz>xz
Translated to system of equations:
x—y=2a,z="b, (yz—xz)c* =1
Corresponding Grébner basis:
B = {&® —x+y, b? -z, xzc? — yzc® + 1}

Pick basis monomials p and symmetric matrix Q:

1 911 G2 i3
p= | & Q= |gi2 Q2 Qg3
abc d13 Q3 B3

p'Qp = q111% +2q1 28 + 2qy 3abc + 2qp za>be + gz 3@ b*c?

p'Qp = q1112 4+ 2 28° + 2y 3abc + 2qp 3a®be + qs 3@ b?c?

p'Qp = q1112 4+ 2 28° + 2y 3abc + 2qp 3a®be + qs 3@ b?c?
Reduce 1 + p!Qp w.r.t. B:

redg(1+p'Qp) = 1+ qi1— Qa3+ 212X — 2q1 2y +
2q zabc + 2g» zabex — 2q» zabey

p'Qp = q111% + 2q1 28 + 2qy 3abc + 2qp za>be + gz 3@ b*c?
Reduce 1 + p'Qp w.r.t. B:

redg(1 +p'Qp) = 1+ q11— Gas+2q12X — 2q1 2+
2q zabc + 2g» zabex — 2q» zabey

Set up semidefinite program redg(1 + p!Qp) = 0:

1+g11—q3=0 —2q12=0 2¢23 =10
2q12=0 2g13=0 —2¢23=10

p'Qp = q111% + 2q1 28 + 2qy 3abc + 2qp za>be + gz 3@ b*c?
Reduce 1 + p'Qp w.r.t. B:

redg(1 +p'Qp) = 1+ q11— Gas+2q12X — 2q1 2+
2q zabc + 2g» zabex — 2q» zabey

Set up semidefinite program redg(1 + p!Qp) = 0:

1+g11—q3=0 —2q12=0 2¢23 =10
2q12=0 2g13=0 —2¢23=10

Solve the program: g3 3 = 1 and g;; = 0 for all (/, /) # (3,3)
14+p'Qp = 1+ (abc)® < (B)
N—_———

Witness for unsatisfiability

@ Sound + “complete” method for quantifier-free real arithmetic
@ Sums of squares as certificates (“proof producing”)

@ Termination criteria can be given — decision procedure

@ In practice:
Enumerate basis monomials with ascending degree

@ Existing solvers for semidefinite programming are numeric
(we use CSDP)
@ Solution:

Solve program numerically, then round to exact solution
[Harrison, 2007]

Pre-processing of Grébner basis is a good idea:
@ Rewriting with polynomials x + t (where x ¢ t)

Pre-processing of Grébner basis is a good idea:

@ Rewriting with polynomials x + t (where x ¢ t)
~» x and polynomial can be eliminated

Pre-processing of Grébner basis is a good idea:
@ Rewriting with polynomials x + t (where x ¢ t)
~» x and polynomial can be eliminated
@ Rewriting with polynomials a3x® — aymf — -+ — aym?
(where o; > 0 and x only with even degree elsewhere)

Pre-processing of Grébner basis is a good idea:
@ Rewriting with polynomials x + t (where x ¢ t)
~» x and polynomial can be eliminated
@ Rewriting with polynomials a3x® — aymf — -+ — aym?
(where o; > 0 and x only with even degree elsewhere)
~+ X and polynomial can be eliminated

Pre-processing of Grébner basis is a good idea:

@ Rewriting with polynomials x + t (where x ¢ t)
~» x and polynomial can be eliminated

@ Rewriting with polynomials a3x® — aymf — -+ — aym?
(where o; > 0 and x only with even degree elsewhere)
~+ X and polynomial can be eliminated

@ Elimination of polynomials xy — 1, x” + t (where x" /t)

Pre-processing of Grébner basis is a good idea:

@ Rewriting with polynomials x + t (where x ¢ t)
~» x and polynomial can be eliminated
@ Rewriting with polynomials a3x® — aymf — -+ — aym?
(where o; > 0 and x only with even degree elsewhere)
~+ X and polynomial can be eliminated
@ Elimination of polynomials xy — 1, x” + t (where x" /t)
~+ x and polynomial xy — 1 can be eliminated by multiplying all
polynomials with some y™ and reducing with xy — 1

Pre-processing of Grébner basis is a good idea:

@ Rewriting with polynomials x + t (where x ¢ t)
~» x and polynomial can be eliminated

@ Rewriting with polynomials a3x® — aymf — -+ — aym?
(where o; > 0 and x only with even degree elsewhere)
~+ X and polynomial can be eliminated

@ Elimination of polynomials xy — 1, x” + t (where x" /t)
~+ x and polynomial xy — 1 can be eliminated by multiplying all
polynomials with some y™ and reducing with xy — 1

@ Splitting polynomials avym? + - - - + apm? € B with a; > 0

Pre-processing of Grébner basis is a good idea:

@ Rewriting with polynomials x + t (where x ¢ t)
~» x and polynomial can be eliminated
@ Rewriting with polynomials a3x® — aymf — -+ — aym?
(where o; > 0 and x only with even degree elsewhere)
~+ X and polynomial can be eliminated
@ Elimination of polynomials xy — 1, x” + t (where x" /t)
~+ x and polynomial xy — 1 can be eliminated by multiplying all
polynomials with some y™ and reducing with xy — 1
@ Splitting polynomials avym? + - - - + apm? € B with a; > 0
~- replace by my,...,my

e Experiments

Positivstellensatz methods [Parrilo, 2003; Harrison, 2007]:

@ Positivstellensatz [Stengle, 1973]:
Extension of Real Nullstellensatz for inequalities

@ Differences: Grobner bases, simpler certificates

Tiwari’s method [Tiwari, 2005]:

@ Differences: less heuristic = completeness,
semidefinite programming

Proof-producing quantifier elimination
[McLaughlin, Harrison, 2005]:

@ Differences: universal fragment vs. full real arithmetic,
performance

Numeric methods:
@ Differences: soundness + completeness
~ AndréPlatzer CMU) 15:819M/13: Data, Code, Decisions ~ 40/42

@ Grobner basis approaches

e GM, GO: pure Grébner bases (inequalities — equations)
e GK: Grobner bases combined with Fourier-Motzkin
e GRN: Grobner bases for the Real Nullstellensatz

@ Quantifier elimination procedures
e QQ, QM, QR;: cylindrical algebraic decomposition (CAD)

e QR;: CAD + virtual substitution
e QC, QH: Cohen-Hérmander
@ Semidefinite programming for the Positivstellensatz
e PH: Harrison’s implementation
e PK: our implementation in KeYmaera

@ Case studies in hybrid systems verification
@ Verification of mathematical algorithms, geometry
@ (A few) synthetic problems

s40
00

——

1000

8 (s)awiL

o
—

	Overview
	First-order Real Arithmetic
	Syntax
	Semantics
	Quantifier Elimination

	Gröbner Bases
	Real Nullstellensatz
	Experiments

