15-819M: Data, Code, Decisions

13: Real Arithmetic

André Platzer

```
aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA
```

```
public cinteger() percent percent
```

Outline

- Overview
- First-order Real Arithmetic
 - Syntax
 - Semantics
 - Quantifier Elimination
- Gröbner Bases
- Real Nullstellensatz
- 5 Experiments

Outline

- Overview
- 2 First-order Real Arithmetic
 - Syntax
 - Semantics
 - Quantifier Elimination
- Gröbner Bases
- 4 Real Nullstellensatz
- 5 Experiments

Floating-point arithmetic in "first" computer

Z1 [Zuse, 1937]

• Floating-point arithmetic in "first" computer Z1 [Zuse, 1937]

• Square root operation by micro-op algorithm Z3 [Zuse, 1941]

• Floating-point arithmetic in "first" computer Z1 [Zuse, 1937]

• Square root operation by micro-op algorithm Z3 [Zuse, 1941]

- Floating-point arithmetic in "first" computer
- Square root operation by micro-op algorithm

```
Z1 [Zuse, 1937]
Z3 [Zuse, 1941]
```

```
r=a-1; q=1; p=1/2;
while (2*p*r >= err) {
  if (2*r - 2*q - p >= 0) {
    r = 2*r - 2*q - p;
    q = q+p;
    p = p/2;
  } else {
    r = 2*r:
    p = p/2;
```

- Floating-point arithmetic in "first" computer
- Square root operation by micro-op algorithm

Z1 [Zuse, 1937] Z3 [Zuse, 1941]

```
r=a-1; q=1; p=1/2;
while (2*p*r >= err) {
   if (2*r - 2*q - p >= 0) {
     r = 2*r - 2*q - p;
    q = q+p;
     p = p/2;
  } else {
     r = 2*r:
    p = p/2;
@loop_invariant(a = q^2+2*p*r)
```

Motivation + Applications of Real Arithmetic

Real arithmetic is used in:

- Mathematical algorithms in real or floating-point arithmetic
- Hybrid systems, i.e., joint discrete and continuous dynamics
- Geometric problems

KeYmaera = KeY + Math for Hybrid Systems

Overall Verification Approach

Overall Verification Approach

Outline

- Overview
- First-order Real Arithmetic
 - Syntax
 - Semantics
 - Quantifier Elimination
- Gröbner Bases
- Real Nullstellensatz
- 5 Experiments

In a formula like

$$(x_1-y_1)^2+(x_2-y_2)^2>p^2$$

how do we get "+" and "-" and "2" and ">" to mean what we want?

In a formula like

$$(x_1 - y_1)^2 + (x_2 - y_2)^2 > p^2$$

how do we get "+" and "-" and "2" and ">" to mean what we want?

• Fix their meaning in the semantics and analyze the resulting logic.

In a formula like

$$(x_1 - y_1)^2 + (x_2 - y_2)^2 > \rho^2$$

how do we get "+" and "-" and "^2" and ">" to mean what we want?

- Fix their meaning in the semantics and analyze the resulting logic.
- Interpreted first-order logic is like first-order logic, except that some symbols have a fixed semantics (all interpretations agree on the semantics of those symbols).

In a formula like

$$(x_1 - y_1)^2 + (x_2 - y_2)^2 > p^2$$

how do we get "+" and "-" and "^2" and ">" to mean what we want?

- Fix their meaning in the semantics and analyze the resulting logic.
- Interpreted first-order logic is like first-order logic, except that some symbols have a fixed semantics (all interpretations agree on the semantics of those symbols).
- ullet Our primary focus: first-order real arithmetic $FOL_{\mathbb{R}}$

Definition (Interpreted FOL \mathbb{R} Term t)

```
\begin{array}{ll} t ::= & & & & & & & \\ x & & & & & & \text{for variable } x \in V \\ r & & & & \text{for rational number } r \\ t_1 + t_2 & & & & & \text{(infix notation)} \\ t_1 - t_2 & & & & & \text{(infix notation)} \\ t_1 \cdot t_2 & & & & & \text{(infix notation)} \\ f(t_1, \dots, t_n) & & & & \text{for function } f/n \in \Sigma \text{ of arity } n \geq 0 \end{array}
```

Definition (Interpreted FOL \mathbb{R} Term t)

```
\begin{array}{ll} t ::= \\ x & \text{for variable } x \in V \\ r & \text{for rational number } r \\ t_1 + t_2 & \text{(infix notation)} \\ t_1 - t_2 & \text{(infix notation)} \\ t_1 \cdot t_2 & \text{(infix notation)} \\ t_1 \cdot t_2 & \text{(infix notation)} \\ f(t_1, \dots, t_n) & \text{for function } f/n \in \Sigma \text{ of arity } n \geq 0 \end{array}
```

Definition (Interpreted FOL \mathbb{R} Formula F, G)

```
F ::=
  t_1 > t_2
                                          (infix notation)
  t_1 > t_2
                                          (infix notation)
  t_1 = t_2
                                          (infix notation)
  \neg F
                                         "not"
  (F \wedge G)
                                         "and"
  (F \vee G)
                                         "or"
  (F \rightarrow G)
                                         "implies"
  (F \leftrightarrow G)
                                         "equivalent/bi-implies"
  \forall x F
                                         "universal quantifier/forall" for x \in V
  \exists x F
                                          "existential quantifier/exists" for x \in V
```

Definition (Interpreted FOL \mathbb{R} Formula F, G)

```
F ::=
  t_1 > t_2
                                         (infix notation)
  t_1 > t_2
                                         (infix notation)
  t_1 = t_2
                                         (infix notation)
  p(t_1,\ldots,t_n)
                                         for predicate p/n \in \Sigma of arity n > 0
  \neg F
                                         "not"
  (F \wedge G)
                                         "and"
  (F \vee G)
                                         "or"
  (F \rightarrow G)
                                         "implies"
  (F \leftrightarrow G)
                                         "equivalent/bi-implies"
  \forall x F
                                         "universal quantifier/forall" for x \in V
  \exists x F
                                         "existential quantifier/exists" for x \in V
```

3
$$(∃x ¬∃y x > y + 3.1415926) → ∀x $(x^2 > x^3)$$$

?
$$F \lor (G \land (H \leftrightarrow \neg F) \rightarrow J)$$

?
$$F \lor (G \land (H \leftrightarrow \neg F) \rightarrow J)$$

?
$$\forall x (p(x) \rightarrow \exists y (p(y) \land \exists x \neg r(x, y)))$$

3
$$(∃x ¬∃y x > y + 3.1415926) → ∀x $(x^2 > x^3)$$$

?
$$F \lor (G \land (H \leftrightarrow \neg F) \rightarrow J)$$

?
$$\forall x (p(x) \rightarrow \exists y (p(y) \land \exists x \neg r(x, y)))$$

$$\checkmark \forall x \forall y (x > y \leftrightarrow x - y > 0)$$

?
$$F \lor (G \land (H \leftrightarrow \neg F) \rightarrow J)$$

?
$$\forall x (p(x) \rightarrow \exists y (p(y) \land \exists x \neg r(x, y)))$$

$$\checkmark \forall x \forall y (x > y \leftrightarrow x - y > 0)$$

$$\sqrt{x} < y \land \exists z x > z^2$$

3
$$(\exists x \neg \exists y \ x > y + 3.1415926) \rightarrow \forall x \ (x^2 > x^3)$$

?
$$F \lor (G \land (H \leftrightarrow \neg F) \rightarrow J)$$

?
$$\forall x (p(x) \rightarrow \exists y (p(y) \land \exists x \neg r(x, y)))$$

$$\checkmark \ \forall x \forall y (x > y \leftrightarrow x - y > 0)$$

$$\checkmark x < y \land \exists z x > z^2$$

$$\checkmark x > 0 \land \forall y \exists z (x > z^2 + y \cdot z - 5)$$

3
$$(\exists x \neg \exists y \ x > y + 3.1415926) \rightarrow \forall x (x^2 > x^3)$$

?
$$F \lor (G \land (H \leftrightarrow \neg F) \rightarrow J)$$

?
$$\forall x (p(x) \rightarrow \exists y (p(y) \land \exists x \neg r(x, y)))$$

$$\checkmark \forall x \forall y (x > y \leftrightarrow x - y > 0)$$

$$\sqrt{x} < y \land \exists z \, x > z^2$$

$$\checkmark x > 0 \land \forall y \exists z (x > z^2 + y \cdot z - 5)$$

$$\times \forall x \exists y x > x^y$$

3
$$(\exists x \neg \exists y \ x > y + 3.1415926) \rightarrow \forall x \ (x^2 > x^3)$$

?
$$F \lor (G \land (H \leftrightarrow \neg F) \rightarrow J)$$

?
$$\forall x (p(x) \rightarrow \exists y (p(y) \land \exists x \neg r(x, y)))$$

$$\checkmark \forall x \forall y (x > y \leftrightarrow x - y > 0)$$

$$\checkmark x < y \land \exists z x > z^2$$

$$\checkmark x > 0 \land \forall y \exists z (x > z^2 + y \cdot z - 5)$$

$$\times \forall x \exists y x > x^y$$

?
$$\exists x \forall y \ x > y + \pi$$

?
$$F \lor (G \land (H \leftrightarrow \neg F) \rightarrow J)$$

?
$$\forall x (p(x) \rightarrow \exists y (p(y) \land \exists x \neg r(x, y)))$$

$$\checkmark \ \forall x \forall y (x > y \leftrightarrow x - y > 0)$$

$$\checkmark x < y \land \exists z x > z^2$$

$$\checkmark x > 0 \land \forall y \exists z (x > z^2 + y \cdot z - 5)$$

$$\times \forall x \exists y x > x^y$$

?
$$\exists x \forall y \, x > y + \pi$$

$$\checkmark (\exists x \, \neg \exists y \, x > y + 3.1415926) \rightarrow \forall x \, (x^2 > x^3)$$

Definition (FOL $_{\mathbb{R}}$ Interpretation I)

- $\mathbf{0}$ $D=\mathbb{R}$
- $oldsymbol{0}$ / assigns relations and functions on ${\mathbb R}$ to all symbols in Σ
 - function $I(f): \mathbb{R}^n \to \mathbb{R}$ for each function symbol f of arity n
 - relation $I(p) \subseteq \mathbb{R}^n$ for each predicate symbol p of arity n
 - element $I(c) \in \mathbb{R}$ for each constant symbol (function of arity 0)
 - truth-value $I(p) \in \{true, false\}$ for each predicate symbol of arity 0

such that

- I(+) is addition on \mathbb{R}
- I(-) is subtraction on \mathbb{R}
- $I(\cdot)$ is multiplication on \mathbb{R}
- I(=) is equality on \mathbb{R}
- I(>) is the greater relation on $\mathbb R$
- $I(\geq)$ is the greater-equals relation on $\mathbb R$
- I(r) = r for all numbers $r \in \mathbb{Q}$

- PL₀
- FOL
- FOL $_{\mathbb{N}}[+,\cdot,=]$
- FOL [$+,\cdot,=$]
- $\ \, \textbf{FOL}_{\mathbb{C}}[+,\cdot,=]$

- √ PL₀ decidable
- FOL
- FOL $_{\mathbb{N}}[+,\cdot,=]$
- FOL [$+,\cdot,=$]
- $\ \, \textbf{FOL}_{\mathbb{C}}[+,\cdot,=]$

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- FOL $_{\mathbb{N}}[+,\cdot,=]$
- $\bullet \mathsf{FOL}_{\mathbb{R}}[+,\cdot,=,<]$
- FOL [$+,\cdot,=$]
- FOL $_{\mathbb{C}}[+,\cdot,=]$

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- $\times \ \mbox{FOL}_{\mathbb{N}}[+,\cdot,=]$ not semidecidable "Peano arithmetic" [Gödel'31]
- lacktriangledown FOL $\mathbb{Q}[+,\cdot,=]$
- FOL $_{\mathbb{C}}[+,\cdot,=]$

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- \times FOL $_{\mathbb{N}}[+,\cdot,=]$ not semidecidable "Peano arithmetic" [Gödel'31]
- $\checkmark \;\; \mathsf{FOL}_{\mathbb{R}}[+,\cdot,=,<] \; \mathsf{decidable} \; [\mathsf{Tarski'51}]$
- FOL $_{\mathbb{Q}}[+,\cdot,=]$
- FOL $_{\mathbb{C}}[+,\cdot,=]$

$$\exists x(x>2 \land x<\tfrac{17}{3})$$

$$\exists x(x>2 \land x<\frac{17}{3})$$

$$\exists x (x > 2 \land x < \frac{17}{3})$$

 $\equiv (2 > 2 \land 2 < \frac{17}{3})$ border case " $x = 2$ "

$$\exists x (x > 2 \land x < \frac{17}{3})$$

$$\equiv (2 > 2 \land 2 < \frac{17}{3}) \qquad \text{border case "} x = 2"$$

$$\lor (\frac{17}{3} > 2 \land \frac{17}{3} < \frac{17}{3}) \qquad \text{border case "} x = \frac{17}{3}"$$

$$\exists x (x > 2 \land x < \frac{17}{3})$$

$$\equiv (2 > 2 \land 2 < \frac{17}{3}) \qquad \text{border case "} x = 2"$$

$$\lor (\frac{17}{3} > 2 \land \frac{17}{3} < \frac{17}{3}) \qquad \text{border case "} x = \frac{17}{3}"$$

$$\lor (\frac{2 + \frac{17}{3}}{2} > 2 \land \frac{2 + \frac{17}{3}}{2} < \frac{17}{3}) \qquad \text{intermediate case "} x = \frac{2 + \frac{17}{3}}{2}"$$

$$\exists x (x > 2 \land x < \frac{17}{3})$$

$$\equiv (2 > 2 \land 2 < \frac{17}{3}) \qquad \text{border case "} x = 2"$$

$$\lor (\frac{17}{3} > 2 \land \frac{17}{3} < \frac{17}{3}) \qquad \text{border case "} x = \frac{17}{3}"$$

$$\lor (\frac{2 + \frac{17}{3}}{2} > 2 \land \frac{2 + \frac{17}{3}}{2} < \frac{17}{3}) \qquad \text{intermediate case "} x = \frac{2 + \frac{17}{3}"}{2}"$$

$$\lor (-\infty > 2 \land -\infty < \frac{17}{3}) \qquad \text{extremal case "} x = -\infty"$$

$$\exists x (x > 2 \land x < \frac{17}{3})$$

$$\equiv (2 > 2 \land 2 < \frac{17}{3}) \qquad \text{border case "} x = 2"$$

$$\lor (\frac{17}{3} > 2 \land \frac{17}{3} < \frac{17}{3}) \qquad \text{border case "} x = \frac{17}{3}"$$

$$\lor (\frac{2 + \frac{17}{3}}{2} > 2 \land \frac{2 + \frac{17}{3}}{2} < \frac{17}{3}) \qquad \text{intermediate case "} x = \frac{2 + \frac{17}{3}}{2}"$$

$$\lor (-\infty > 2 \land -\infty < \frac{17}{3}) \qquad \text{extremal case "} x = -\infty"$$

$$\lor (\infty > 2 \land \infty < \frac{17}{3}) \qquad \text{extremal case "} x = \infty"$$

$$\equiv true \qquad \text{evaluate}$$

Quantifier Elimination and Projection

$$\exists y (y \geq 0 \land 1 - x - 1.83x^2 + 1.66x^3 > y)$$

Quantifier Elimination and Projection

$$\exists y (y \geq 0 \land 1 - x - 1.83x^2 + 1.66x^3 > y)$$

Quantifier Elimination and Projection

Quantifier Elimination in Real-Closed Fields

Definition (Quantifier elimination)

A first-order theory admits *quantifier elimination* if to each formula ϕ , a quantifier-free formula $QE(\phi)$ can be effectively associated that is equivalent (i.e., $\phi \leftrightarrow QE(\phi)$ is valid) and has no other free variables. The operation QE is further assumed to evaluate ground formulas (i.e., without variables), yielding a decision procedure for this theory.

Quantifier Elimination in Real-Closed Fields

Definition (Quantifier elimination)

A first-order theory admits *quantifier elimination* if to each formula ϕ , a quantifier-free formula $QE(\phi)$ can be effectively associated that is equivalent (i.e., $\phi \leftrightarrow QE(\phi)$ is valid) and has no other free variables. The operation QE is further assumed to evaluate ground formulas (i.e., without variables), yielding a decision procedure for this theory.

Theorem (Tarski'30,'51, Seidenberg'54)

 $\mathsf{FOL}_\mathbb{R}$ admits quantifier elimination and is decidable.

Quantifier Elimination in Real-Closed Fields

Definition (Quantifier elimination)

A first-order theory admits *quantifier elimination* if to each formula ϕ , a quantifier-free formula $QE(\phi)$ can be effectively associated that is equivalent (i.e., $\phi \leftrightarrow QE(\phi)$ is valid) and has no other free variables. The operation QE is further assumed to evaluate ground formulas (i.e., without variables), yielding a decision procedure for this theory.

Theorem (Tarski'30,'51, Seidenberg'54)

 $\mathsf{FOL}_\mathbb{R}$ admits quantifier elimination and is decidable.

Theorem (Complexity, Davenport&Heintz'88,Weispfenning'88)

(Time and space) complexity of QE for \mathbb{R} is doubly exponential in the number of quantifier (alternations).

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- \times FOL $_{\mathbb{N}}[+,\cdot,=]$ not semidecidable "Peano arithmetic" [Gödel'31]
- $\checkmark \;\; \mathsf{FOL}_{\mathbb{R}}[+,\cdot,=,<] \; \mathsf{decidable} \; [\mathsf{Tarski'51}]$
- FOL $_{\mathbb{Q}}[+,\cdot,=]$
- FOL $_{\mathbb{C}}[+,\cdot,=]$

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- \times FOL $_{\mathbb{N}}[+,\cdot,=]$ not semidecidable "Peano arithmetic" [Gödel'31]
- $\checkmark \;\; \mathsf{FOL}_{\mathbb{R}}[+,\cdot,=,<] \; \mathsf{decidable} \; [\mathsf{Tarski'51}]$
- \times FOL $_{\mathbb{Q}}[+,\cdot,=]$ not even semidecidable [Robinson'49]
- $lackbox{1}{f FOL}_{\mathbb{C}}[+,\cdot,=]$

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- \times FOL $_{\mathbb{N}}[+,\cdot,=]$ not semidecidable "Peano arithmetic" [Gödel'31]
- $\checkmark \;\; \mathsf{FOL}_{\mathbb{R}}[+,\cdot,=,<] \; \mathsf{decidable} \; [\mathsf{Tarski'51}]$
- \times FOL $_{\mathbb{Q}}[+,\cdot,=]$ not even semidecidable [Robinson'49]
- \checkmark FOL_ℂ[+, ·, =] decidable [Tarski'51,Chevalley'51]

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- \times FOL $_{\mathbb{N}}[+,\cdot,=]$ not semidecidable "Peano arithmetic" [Gödel'31]
- $\checkmark \ \ \mathsf{FOL}_{\mathbb{R}}[+,\cdot,=,<] \ \mathsf{decidable} \ [\mathsf{Tarski'51}]$
- \times FOL $_{\mathbb{Q}}[+,\cdot,=]$ not even semidecidable [Robinson'49]
- \checkmark FOL_ℂ[+, ·, =] decidable [Tarski'51,Chevalley'51]
- \bigcirc FOL_N[+,=,2|,3|,...]
- $lacksquare{1}{2}$ FOL $_{\mathbb{R}}[+,\cdot,sin,=,<]$

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- \times FOL $_{\mathbb{N}}[+,\cdot,=]$ not semidecidable "Peano arithmetic" [Gödel'31]
- $\checkmark \ \ \mathsf{FOL}_{\mathbb{R}}[+,\cdot,=,<] \ \mathsf{decidable} \ [\mathsf{Tarski'51}]$
- \times FOL $_{\mathbb{Q}}[+,\cdot,=]$ not even semidecidable [Robinson'49]
- \checkmark FOL $_{\mathbb{C}}[+,\cdot,=]$ decidable [Tarski'51,Chevalley'51]
- \checkmark FOL_N[+,=,2|,3|,...] decidable "Presburger arithmetic"
- **8** FOL_{\mathbb{R}}[+,·, exp, =, <]
- $lacksquare{1}{2}$ FOL $_{\mathbb{R}}[+,\cdot,sin,=,<]$

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- \times FOL $_{\mathbb{N}}[+,\cdot,=]$ not semidecidable "Peano arithmetic" [Gödel'31]
- $\checkmark \ \ \mathsf{FOL}_{\mathbb{R}}[+,\cdot,=,<] \ \mathsf{decidable} \ [\mathsf{Tarski'51}]$
- \times FOL $_{\mathbb{Q}}[+,\cdot,=]$ not even semidecidable [Robinson'49]
- \checkmark FOL $_{\mathbb{C}}[+,\cdot,=]$ decidable [Tarski'51,Chevalley'51]
- \checkmark FOL_N[+,=,2|,3|,...] decidable "Presburger arithmetic"
- ? $FOL_{\mathbb{R}}[+,\cdot,\textit{exp},=,<]$ unknown
- $lacksquare{1}{2}$ FOL $_{\mathbb{R}}[+,\cdot,\textit{sin},=,<]$

- √ PL₀ decidable
- ? FOL undecidable but semidecidable
- \times FOL $_{\mathbb{N}}[+,\cdot,=]$ not semidecidable "Peano arithmetic" [Gödel'31]
- $\checkmark \ \ \mathsf{FOL}_{\mathbb{R}}[+,\cdot,=,<] \ \mathsf{decidable} \ [\mathsf{Tarski'51}]$
- \times FOL $_{\mathbb{Q}}[+,\cdot,=]$ not even semidecidable [Robinson'49]
- \checkmark FOL_ℂ[+,·,=] decidable [Tarski'51,Chevalley'51]
- \checkmark FOL_N[+,=,2|,3|,...] decidable "Presburger arithmetic"
- ? $FOL_{\mathbb{R}}[+,\cdot,\textit{exp},=,<]$ unknown
- \times FOL $_{\mathbb{R}}[+,\cdot,\textit{sin},=,<]$ not even semidecidable

• Commutative group $(\mathbb{R}, +)$: $\forall x \forall y \forall z \, x + (y + z) = (x + y) + z$

- Commutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$

- **1** Commutative group $(\mathbb{R}, +)$: $\forall x \forall y \forall z \, x + (y + z) = (x + y) + z$
- 2 Neutral $\forall x \, x + 0 = x$

- **1** Commutative group $(\mathbb{R}, +)$: $\forall x \forall y \forall z \, x + (y + z) = (x + y) + z$
- 2 Neutral $\forall x \, x + 0 = x$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- **3** Inverse $\forall x \exists y x + y = 0$
- 4 Abelian $\forall x \forall y (x + y = y + x)$
- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$

- **o** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- **1** Neutral $\forall x x \cdot 1 = x$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- **1** Inverse $\forall x \exists y \, x + y = 0$
- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- Oliverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- **1** Inverse $\forall x \exists y \, x + y = 0$
- 4 Abelian $\forall x \forall y (x + y = y + x)$
- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- 3 Abelian $\forall x \forall y (x \cdot y = y \cdot x)$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- **1** Inverse $\forall x \exists y \, x + y = 0$
- **5** Commutative group ($\mathbb{R} \setminus \{0\}, \cdot$): $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 1 Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- 3 Abelian $\forall x \forall y (x \cdot y = y \cdot x)$
- **9** Distributive $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- 4 Abelian $\forall x \forall y (x + y = y + x)$
- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 1 Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- 3 Abelian $\forall x \forall y (x \cdot y = y \cdot x)$
- Obstributive $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$
- **10** Transitive $\forall x \forall y \forall z (x \geq y \land y \geq z \rightarrow x \geq z)$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$

- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 1 Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- 3 Abelian $\forall x \forall y (x \cdot y = y \cdot x)$
- **9** Distributive $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$
- **1** Transitive $\forall x \forall y \forall z (x \geq y \land y \geq z \rightarrow x \geq z)$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$

- **5** Commutative group ($\mathbb{R} \setminus \{0\}, \cdot$): $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 1 Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- 3 Abelian $\forall x \forall y (x \cdot y = y \cdot x)$
- **9** Distributive $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$
- **1** Transitive $\forall x \forall y \forall z (x \geq y \land y \geq z \rightarrow x \geq z)$
- **1** Antisym. $\forall x \forall y (x \geq y \land y \geq x \rightarrow x = y)$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- **1** Inverse $\forall x \exists y \, x + y = 0$
- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 1 Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- 3 Abelian $\forall x \forall y (x \cdot y = y \cdot x)$
- Obstributive $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$
- **1** Transitive $\forall x \forall y \forall z (x \geq y \land y \geq z \rightarrow x \geq z)$
- **1** Antisym. $\forall x \forall y (x \geq y \land y \geq x \rightarrow x = y)$

- Ommutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- **3** Inverse $\forall x \exists y \ x + y = 0$
- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 1 Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- 3 Abelian $\forall x \forall y (x \cdot y = y \cdot x)$
- **9** Distributive $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$
- **1** Transitive $\forall x \forall y \forall z (x \geq y \land y \geq z \rightarrow x \geq z)$
- **1** Antisym. $\forall x \forall y (x \geq y \land y \geq x \rightarrow x = y)$

Axioms of Reals

- **1** Commutative group $(\mathbb{R}, +)$: $\forall x \forall y \forall z \, x + (y + z) = (x + y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- **1** Inverse $\forall x \exists y \, x + y = 0$
- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 1 Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- Obstributive $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$
- **1** Transitive $\forall x \forall y \forall z (x \geq y \land y \geq z \rightarrow x \geq z)$
- **1** Antisym. $\forall x \forall y (x \geq y \land y \geq x \rightarrow x = y)$

- **4** Positive $\forall x \forall y (x \ge 0 \land y \ge 0 \rightarrow xy \ge 0)$
- Sup "Non-empty subsets with upper bounds have supremum"

What is a good set of first-order axioms for the reals \mathbb{R} ?

What is a good set of first-order axioms for the reals \mathbb{R} ?

Theorem (downward Skolem-Löwenheim'1915-20)

Let Γ be a countable set of first-order formulas.

 Γ has a model \Rightarrow Γ has an infinite countable model "first-order logic cannot distinguish different infinities"

What is a good set of first-order axioms for the reals \mathbb{R} ?

Theorem (downward Skolem-Löwenheim'1915-20)

Let Γ be a countable set of first-order formulas.

 Γ has a model \Rightarrow Γ has an infinite countable model "first-order logic cannot distinguish different infinities"

Corollary

The reals cannot be characterized (up to isomorphism) in first-order logic (nor any other infinite structure really, not even in the generated case)

What is a good set of first-order axioms for the reals \mathbb{R} ?

Theorem (downward Skolem-Löwenheim'1915-20)

Let Γ be a countable set of first-order formulas.

 Γ has a model \Rightarrow Γ has an infinite countable model "first-order logic cannot distinguish different infinities"

Corollary

The reals cannot be characterized (up to isomorphism) in first-order logic (nor any other infinite structure really, not even in the generated case)

But the first-order "view" of the reals is still fairly amazing

Relaxing Reals to Real Fields

Definition (Formally real field)

Field *R* is a *(formally) real field* iff, equivalently:

● -1 is not a sum of squares in R.

Relaxing Reals to Real Fields

Definition (Formally real field)

Field R is a (formally) real field iff, equivalently:

- \bullet -1 is not a sum of squares in R.
- **2** For every $x_1, ..., x_n \in R$, $\sum_{i=1}^n x_i^2 = 0$ implies $x_1 = ... = x_n = 0$.

Relaxing Reals to Real Fields

Definition (Formally real field)

Field R is a (formally) real field iff, equivalently:

- \bullet -1 is not a sum of squares in R.
- For every $x_1, \ldots, x_n \in R$, $\sum_{i=1}^n x_i^2 = 0$ implies $x_1 = \cdots = x_n = 0$.
- 3 R admits an ordering that makes R an ordered field.

Definition (Real-closed field)

Field *R* is *real-closed field* iff, equivalently:

• R is an ordered field where every positive element is a square and every univariate polynomial in R[X] of odd degree has a root in R (then this order is, in fact, unique).

Definition (Real-closed field)

- R is an ordered field where every positive element is a square and every univariate polynomial in R[X] of odd degree has a root in R (then this order is, in fact, unique).
- 2 R is not algebraically closed but its field extension $R[\sqrt{-1}] = R[i]/(i^2 + 1)$ is algebraically closed.

Definition (Real-closed field)

- R is an ordered field where every positive element is a square and every univariate polynomial in R[X] of odd degree has a root in R (then this order is, in fact, unique).
- 2 R is not algebraically closed but its field extension $R[\sqrt{-1}] = R[i]/(i^2 + 1)$ is algebraically closed.
- 8 R is not algebraically closed but its algebraic closure is a finite extension, i.e., finitely generated over R.

Definition (Real-closed field)

- R is an ordered field where every positive element is a square and every univariate polynomial in R[X] of odd degree has a root in R (then this order is, in fact, unique).
- 2 R is not algebraically closed but its field extension $R[\sqrt{-1}] = R[i]/(i^2 + 1)$ is algebraically closed.
- R is not algebraically closed but its algebraic closure is a finite extension, i.e., finitely generated over R.
- **4** R has the *intermediate value property*, i.e., R is an ordered field such that for any polynomial $p \in R[X]$ with $a, b \in R$, a < b and p(a)p(b) < 0, there is a ζ with $a < \zeta < b$ such that $p(\zeta) = 0$.

Definition (Real-closed field)

- R is an ordered field where every positive element is a square and every univariate polynomial in R[X] of odd degree has a root in R (then this order is, in fact, unique).
- 2 R is not algebraically closed but its field extension $R[\sqrt{-1}] = R[i]/(i^2 + 1)$ is algebraically closed.
- R is not algebraically closed but its algebraic closure is a finite extension, i.e., finitely generated over R.
- **4** R has the *intermediate value property*, i.e., R is an ordered field such that for any polynomial $p \in R[X]$ with $a, b \in R$, a < b and p(a)p(b) < 0, there is a ζ with $a < \zeta < b$ such that $p(\zeta) = 0$.
- R is a real field such that no proper algebraic extension is a formally real field.

Example (Real-closed fields)

ullet Real numbers $\mathbb R$.

Example (Real-closed fields)

- Real numbers \mathbb{R} .
- Real algebraic numbers $\bar{\mathbb{Q}} \cap \mathbb{R}$, that is, real numbers in the algebraic closure of \mathbb{Q} , i.e., real numbers that are roots of a non-zero polynomial with rational or integer coefficients

$$p(r) = 0$$
 for some $p \in \mathbb{Q}[X] \setminus \{0\}$

Example (Real-closed fields)

- Real numbers \mathbb{R} .
- Real algebraic numbers $\bar{\mathbb{Q}} \cap \mathbb{R}$, that is, real numbers in the algebraic closure of \mathbb{Q} , i.e., real numbers that are roots of a non-zero polynomial with rational or integer coefficients

$$p(r) = 0$$
 for some $p \in \mathbb{Q}[X] \setminus \{0\}$

 Computable numbers, i.e., those that can be approximated by a computable function up to any desired precision.

Example (Real-closed fields)

- Real numbers \mathbb{R} .
- Real algebraic numbers $\bar{\mathbb{Q}} \cap \mathbb{R}$, that is, real numbers in the algebraic closure of \mathbb{Q} , i.e., real numbers that are roots of a non-zero polynomial with rational or integer coefficients

$$p(r) = 0$$
 for some $p \in \mathbb{Q}[X] \setminus \{0\}$

• Computable numbers, i.e., those that can be approximated by a computable function up to any desired precision. π lives here!

Example (Real-closed fields)

- Real numbers \mathbb{R} .
- Real algebraic numbers $\bar{\mathbb{Q}} \cap \mathbb{R}$, that is, real numbers in the algebraic closure of \mathbb{Q} , i.e., real numbers that are roots of a non-zero polynomial with rational or integer coefficients

$$p(r) = 0$$
 for some $p \in \mathbb{Q}[X] \setminus \{0\}$

- Computable numbers, i.e., those that can be approximated by a computable function up to any desired precision. π lives here!
- ZFC-Definable numbers, i.e., those real numbers $a \in \mathbb{R}$ for which there is a first-order formula φ in set theory with one free variable such that a is the unique real number for which φ holds true.

$$I \models \varphi \text{ iff } I(x) = a$$

The advantages of implicit definition over construction are roughly those of theft over honest toil [Russell]

First-Order Axiom Schemes of Real-Closed Fields

- Commutative group $(\mathbb{R}, +)$: $\forall x \forall y \forall z \, x + (y + z) = (x + y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- **3** Inverse $\forall x \exists y x + y = 0$
- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- **6** Neutral $\forall x x \cdot 1 = x$
- **②** Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- **9** Distributive $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$

First-Order Axiom Schemes of Real-Closed Fields

- Commutative group $(\mathbb{R},+)$: $\forall x \forall y \forall z \, x + (y+z) = (x+y) + z$
- 2 Neutral $\forall x \, x + 0 = x$
- **3** Inverse $\forall x \exists y x + y = 0$
- **5** Commutative group $(\mathbb{R} \setminus \{0\}, \cdot)$: $\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- **6** Neutral $\forall x x \cdot 1 = x$
- **②** Inverse $\forall x (x \neq 0 \rightarrow \exists y \ x \cdot y = 1)$
- **9** Distributive $\forall x \forall y \forall z (x \cdot (y + z) = (x \cdot y) + (x \cdot z))$

History of Symbolic Methods in Real Arithmetic

1930	First quantifier elimination procedure by Tarski (Non-elementary)
1965	Buchberger introduces Gröbner bases
1973	Real Nullstellensatz and Positivstellensatz by Stengle
1975	Cylindrical algebraic decomposition (CAD) by Collins (Doubly exponential)
1983	Cohen-Hörmander elimination procedure
1993	Virtual substitution by Weispfenning
2003	Parrilo introduces semidefinite programming for the Positivstellensatz (Later refined by Harrison)
2005	Tiwari's polynomial simplex method

History of Symbolic Methods in Real Arithmetic

1930	First quantifier elimination procedure by Tarski (Non-elementary)
1965	Buchberger introduces Gröbner bases
1973	Real Nullstellensatz and Positivstellensatz by Stengle
1975	Cylindrical algebraic decomposition (CAD) by Collins (Doubly exponential)
1983	Cohen-Hörmander elimination procedure
1993	Virtual substitution by Weispfenning
2003	Parrilo introduces semidefinite programming for the Positivstellensatz (Later refined by Harrison)
2005	Tiwari's polynomial simplex method

Outline

- Overview
- First-order Real Arithmetic
 - Syntax
 - Semantics
 - Quantifier Elimination
- Gröbner Bases
- Real Nullstellensatz
- 5 Experiments

Verification conditions $(=, \neq, <, \leq)$

Inequalities and disequations?

Inequalities and disequations can be eliminated:

$$f \neq g \equiv \exists z. (f - g)z = 1$$

 $f \geq g \equiv \exists z. f - g = z^2$
 $f > g \equiv \exists z. (f - g)z^2 = 1$

Goal: prove unsatisfiability of:

$$\bigwedge_i t_i = 0$$

Witnesses for unsatisfiability:

$$\left(\sum_i s_i t_i\right) = 1 \quad \Longrightarrow \quad \bigwedge_i t_i = 0 \;\; ext{unsatisfiable}$$

How to determine coefficients s_i ?

Witnesses for unsatisfiability:

$$\Big(\sum_i s_i t_i\Big) = 1 \quad \Longrightarrow \quad \bigwedge_i t_i = 0 \;\; {\sf unsatisfiable}$$

How to determine coefficients s_i ?

Need some more notation:

• Ideal generated by $\{t_1,\ldots,t_n\}\subseteq \mathbb{Q}[X_1,\ldots,X_n]$:

$$(t_1,\ldots,t_n) = \left\{\sum_i s_i t_i \mid s_1,\ldots,s_n \in \mathbb{Q}[X_1,\ldots,X_n]\right\}$$

Gröbner bases to solve the ideal membership problem:

- Monomial ordering ≺: admissible total well-founded ordering on monomials (Gives the order in which to try eliminating monomials)
- Reduction of a polynomial s w.r.t. $B = \{t_1, \ldots, t_n\}$:

$$s \succ s + u_1 t_{i_1}$$

 $\succ s + u_1 t_{i_1} + u_2 t_{i_2}$
 $\succ \cdots$
 $\succ \text{red}_B s$

• B is called Gröbner basis if $red_B s = 0$ for all $s \in (B)$

Gröbner bases to solve the ideal membership problem:

- Monomial ordering ≺: admissible total well-founded ordering on monomials (Gives the order in which to try eliminating monomials)
- Reduction of a polynomial s w.r.t. $B = \{t_1, \ldots, t_n\}$:

$$s \succ s + u_1 t_{i_1}$$

 $\succ s + u_1 t_{i_1} + u_2 t_{i_2}$
 $\succ \cdots$
 $\succ \text{red}_B s$

• B is called Gröbner basis if $red_B s = 0$ for all $s \in (B)$

Gröbner bases to solve the ideal membership problem:

- Monomial ordering ≺: admissible total well-founded ordering on monomials
- - **1** $X^{\nu} \leq X^{\mu}$ then $X^{\nu}X^{\lambda} \leq X^{\mu}X^{\lambda}$ for all $\nu, \mu, \lambda \in \mathbb{N}^n$
 - $X^{\nu}|X^{\mu}$ then $X^{\nu} \leq X^{\mu}$ for all $\nu, \mu \in \mathbb{N}^n$

The Nullstellensatz

Method is sound and complete over complex numbers:

Theorem (Hilbert's Nullstellensatz)

$$eg \exists x \in \mathbb{C}^n : \bigwedge_i t_i(x) = 0 \quad \textit{iff} \quad 1 \in (t_1, \dots, t_n)$$

What about the real numbers?

The Nullstellensatz

Method is sound and complete over complex numbers:

Theorem (Hilbert's Nullstellensatz)

$$\neg \exists x \in \mathbb{C}^n : \bigwedge_i t_i(x) = 0 \quad iff \quad 1 \in (t_1, \dots, t_n)$$

⇒ Method sound but cannot be complete over reals:

e.g.
$$x^2 + 1 = 0$$
 is unsatisfiable
but $(x^2 + 1)$ does not contain 1

Next: an extension that is complete over the reals

Gröbner Bases

Definition (Gröbner basis)

Finite set $G \subseteq k[X_1, ..., X_n]$ with (G) = I is *Gröbner basis* of ideal I iff, equivalently:

• Reduction with respect to G gives 0 for any $p \in I$.

Definition (Gröbner basis)

Finite set $G \subseteq k[X_1, \dots, X_n]$ with (G) = I is *Gröbner basis* of ideal I iff, equivalently:

- Reduction with respect to G gives 0 for any $p \in I$.
- 2 $\operatorname{red}_G p = 0 \operatorname{iff} p \in I$.

Definition (Gröbner basis)

Finite set $G \subseteq k[X_1, \dots, X_n]$ with (G) = I is *Gröbner basis* of ideal I iff, equivalently:

- **1** Reduction with respect to G gives 0 for any $p \in I$.
- 2 $\operatorname{red}_G p = 0 \operatorname{iff} p \in I$.
- 3 Reduction with respect to G gives a unique remainder.

Definition (Gröbner basis)

Finite set $G \subseteq k[X_1, \dots, X_n]$ with (G) = I is *Gröbner basis* of ideal I iff, equivalently:

- **1** Reduction with respect to G gives 0 for any $p \in I$.
- 2 $\operatorname{red}_G p = 0 \operatorname{iff} p \in I$.
- Reduction with respect to G gives a unique remainder.

Theorem (Hilbert's basis theorem)

Every ideal in the ring $k[X_1, ..., X_n]$ of multivariate polynomials over a field k is finitely generated.

Definition (Gröbner basis)

Finite set $G \subseteq k[X_1, \dots, X_n]$ with (G) = I is *Gröbner basis* of ideal I iff, equivalently:

- **1** Reduction with respect to G gives 0 for any $p \in I$.
- 2 $\operatorname{red}_G p = 0 \operatorname{iff} p \in I$.
- Reduction with respect to G gives a unique remainder.

Theorem (Hilbert's basis theorem)

Every ideal in the ring $k[X_1, ..., X_n]$ of multivariate polynomials over a field k is finitely generated.

Can be computed effectively by Buchberger's algorithm

- choose $f, g \in F$
- $s:=\frac{\mathit{lcm}(\ell(f),\ell(g))}{\ell(f)}f-\frac{\mathit{lcm}(\ell(f),\ell(g))}{\ell(g)}g$ let the leading terms $\ell(...)$ cancel by construction

- choose $f, g \in F$
- $s:=rac{lcm(\ell(f),\ell(g))}{\ell(f)}f-rac{lcm(\ell(f),\ell(g))}{\ell(g)}g$ let the leading terms $\ell(...)$ cancel by construction

- choose $f, g \in F$
- $s := \frac{lcm(\ell(f),\ell(g))}{\ell(f)}f \frac{lcm(\ell(f),\ell(g))}{\ell(g)}g$ let the leading terms $\ell(...)$ cancel by construction

- choose $f, g \in F$
- $s:=\frac{\mathit{lcm}(\ell(f),\ell(g))}{\ell(f)}f-\frac{\mathit{lcm}(\ell(f),\ell(g))}{\ell(g)}g$ let the leading terms $\ell(...)$ cancel by construction

- \bigcirc choose $f,g\in F$
- $s := \frac{\mathit{lcm}(\ell(f),\ell(g))}{\ell(f)} f \frac{\mathit{lcm}(\ell(f),\ell(g))}{\ell(g)} g = \frac{\ell(g)}{\mathit{gcd}(\ell(f),\ell(g))} f \frac{\ell(g)}{\mathit{gcd}(\ell(f),\ell(g))} g$ let the leading terms $\ell(...)$ cancel by construction

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

Example (GB(
$$\{f = x^2 + 2xy^2, g = xy + 2y^3 - 1\}$$
 with $x > y$ lex)

$$S(f,g) =$$

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

Example (GB(
$$\{f = x^2 + 2xy^2, g = xy + 2y^3 - 1\}$$
 with $x > y$ lex)

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

Example (GB(
$$\{f = x^2 + 2xy^2, g = xy + 2y^3 - 1\}$$
 with $x > y$ lex)

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

= $x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$

$$m{e}$$
 $s:=rac{\ell(g)}{\gcd(\ell(f),\ell(g))}f-rac{\ell(g)}{\gcd(\ell(f),\ell(g))}g$

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

= $x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$
= $x =: h \implies G = \{f, g, h\}$

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

$$= x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$$

$$= x =: h \quad \Leftrightarrow G = \{f, g, h\}$$

$$S(g,h) = \frac{x}{x}(xy + 2y^3 - 1) - \frac{xy}{x}(x)$$

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

$$= x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$$

$$= x =: h \quad \Rightarrow G = \{f, g, h\}$$

$$S(g,h) = \frac{x}{x}(xy + 2y^3 - 1) - \frac{xy}{x}(x)$$

$$= xy + 2y^3 - 1 - xy$$

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

$$= x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$$

$$= x =: h \quad \Rightarrow G = \{f, g, h\}$$

$$S(g,h) = \frac{x}{x}(xy + 2y^3 - 1) - \frac{xy}{x}(x)$$

$$= xy + 2y^3 - 1 - xy$$

$$= 2y^3 - 1 =: e \quad \Rightarrow G = \{f, g, h, e\}$$

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

Example (GB(
$$\{f = x^2 + 2xy^2, g = xy + 2y^3 - 1\}$$
 with $x > y$ lex)

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

$$= x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$$

$$= x =: h \quad \Rightarrow G = \{f, g, h\}$$

$$S(g,h) = \frac{x}{x}(xy + 2y^3 - 1) - \frac{xy}{x}(x)$$

$$= xy + 2y^3 - 1 - xy$$

$$= 2y^3 - 1 =: e \quad \Rightarrow G = \{f, g, h, e\}$$

$$S(f,h) = \frac{x}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(x)$$

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

$$= x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$$

$$= x =: h \quad \Rightarrow G = \{f, g, h\}$$

$$S(g,h) = \frac{x}{x}(xy + 2y^3 - 1) - \frac{xy}{x}(x)$$

$$= xy + 2y^3 - 1 - xy$$

$$= 2y^3 - 1 =: e \quad \Rightarrow G = \{f, g, h, e\}$$

$$S(f,h) = \frac{x}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(x)$$

$$= x^2 + 2xy^2 - x^2$$

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

Example (GB(
$$\{f = x^2 + 2xy^2, g = xy + 2y^3 - 1\}$$
 with $x > y$ lex)

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

$$= x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$$

$$= x =: h \quad \Rightarrow G = \{f, g, h\}$$

$$S(g,h) = \frac{x}{x}(xy + 2y^3 - 1) - \frac{xy}{x}(x)$$

$$= xy + 2y^3 - 1 - xy$$

$$= 2y^3 - 1 =: e \quad \Rightarrow G = \{f, g, h, e\}$$

$$S(f,h) = \frac{x}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(x)$$

$$= x^2 + 2xy^2 - x^2$$

$$= 2xy^2$$

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))} g$$

Example (GB($\{f = x^2 + 2xy^2, g = xy + 2y^3 - 1\}$ with x > y lex)

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

$$= x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$$

$$= x =: h \quad \Rightarrow G = \{f, g, h\}$$

$$S(g,h) = \frac{x}{x}(xy + 2y^3 - 1) - \frac{xy}{x}(x)$$

$$= xy + 2y^3 - 1 - xy$$

$$= 2y^3 - 1 =: e \quad \Rightarrow G = \{f, g, h, e\}$$

$$S(f,h) = \frac{x}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(x)$$

$$= x^2 + 2xy^2 - x^2$$

$$= 2xy^2 = 2y^2h \quad \Rightarrow 0 \text{ by red}_G$$

André Platzer (CMU)

$$s := \frac{\ell(g)}{\gcd(\ell(f),\ell(g))}f - \frac{\ell(g)}{\gcd(\ell(f),\ell(g))}g$$

Example (GB(
$$\{f = x^2 + 2xy^2, g = xy + 2y^3 - 1\}$$
 with $x > y$ lex)

$$S(f,g) = \frac{xy}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(xy + 2y^3 - 1)$$

$$= x^2y + 2xy^3 - (x^2y + 2xy^3 - x)$$

$$= x =: h \quad \Rightarrow G = \{f, g, h\}$$

$$S(g,h) = \frac{x}{x}(xy + 2y^3 - 1) - \frac{xy}{x}(x)$$

$$= xy + 2y^3 - 1 - xy \qquad G = \{x, 2y^3 - 1\}!$$

$$= 2y^3 - 1 =: e \quad \Rightarrow G = \{f, g, h, e\}$$

$$S(f,h) = \frac{x}{x}(x^2 + 2xy^2) - \frac{x^2}{x}(x)$$

 $=2xv^2=2v^2h \rightarrow 0$ by red_G André Platzer (CMU)

 $= x^2 + 2xv^2 - x^2$

Outline

- Overview
- Pirst-order Real Arithmetic
 - Syntax
 - Semantics
 - Quantifier Elimination
- Gröbner Bases
- Real Nullstellensatz
- 5 Experiments

The Nullstellensatz

Method is sound and complete over complex numbers:

Theorem (Hilbert's Nullstellensatz)

$$\neg \exists x \in \mathbb{C}^n : \bigwedge_i t_i(x) = 0 \quad iff \quad 1 \in (t_1, \dots, t_n)$$

⇒ Method sound but cannot be complete over reals:

e.g.
$$x^2 + 1 = 0$$
 is unsatisfiable
but $(x^2 + 1)$ does not contain 1

Next: an extension that is complete over the reals

Theorem (Stengle's Real Nullstellensatz, 1973)

$$eg \exists x \in \mathbb{R}^n : \bigwedge_i t_i(x) = 0 \quad iff$$

$$\exists s_1, \dots, s_k \in \mathbb{R}[X_1, \dots, X_m] : 1 + s_1^2 + \dots + s_k^2 \in (t_1, \dots, t_n)$$

Theorem (Stengle's Real Nullstellensatz, 1973)

$$eg \exists x \in \mathbb{R}^n : \bigwedge_i t_i(x) = 0 \quad iff$$

$$\exists s_1, \dots, s_k \in \mathbb{R}[X_1, \dots, X_m] : 1 + s_1^2 + \dots + s_k^2 \in (t_1, \dots, t_n)$$

Theorem (Stengle's Real Nullstellensatz, 1973)

$$\neg \exists x \in \mathbb{R}^n : \bigwedge_i t_i(x) = 0 \quad iff$$

$$\exists s_1, \dots, s_k \in \mathbb{R}[X_1, \dots, X_m] : 1 + s_1^2 + \dots + s_k^2 \in (t_1, \dots, t_n)$$

How to pick sum of squares $s_1^2 + \cdots + s_n^2$?

Observation: [Parrilo, 2003] Sums of squares can be represented as scalar products

E.g.

$$2x^{2} - 2xy + y^{2} = x^{2} + (x - y)^{2} = \begin{pmatrix} x \\ y \end{pmatrix}^{t} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$red(1+s)=0?$$

$$\uparrow$$
Pick sum of squares s

$$\downarrow$$
Verification conditions
$$(=, \neq, <, \leq)$$
Systems of equations $(=)$

$$\downarrow$$
Find $1=0$?

Lemma

Every sum of squares can be represented as $p^t X p$, where $p \in \mathbb{R}[X_1, \dots, X_m]^k$ and X is positive semi-definite (and vice versa).

Matrix X is called positive semi-definite if

- X is symmetric (i.e., $X^t = X$)
- $x^t X x \ge 0$ for all $x \in \mathbb{R}^n$.

Lemma

Every sum of squares can be represented as $p^t X p$, where $p \in \mathbb{R}[X_1, \dots, X_m]^k$ and X is positive semi-definite (and vice versa).

Matrix X is called positive semi-definite if

- X is symmetric (i.e., $X^t = X$)
- $x^t X x \ge 0$ for all $x \in \mathbb{R}^n$.

Constraint solving by semidefinite programming (convex optimisation):

 Has been used successfully in combination with Positivstellensatz [Parrilo, 2003; Harrison, 2007]

Prove unsatisfiability of:

$$x \ge y, z \ge 0, yz > xz$$

Prove unsatisfiability of:

$$x \ge y, z \ge 0, yz > xz$$

Translated to system of equations:

$$x - y = a^2$$
, $z = b^2$, $(yz - xz)c^2 = 1$

Prove unsatisfiability of:

$$x \ge y, z \ge 0, yz > xz$$

Translated to system of equations:

$$x - y = a^2$$
, $z = b^2$, $(yz - xz)c^2 = 1$

Corresponding Gröbner basis:

$$B = \{a^2 - x + y, b^2 - z, xzc^2 - yzc^2 + 1\}$$

Prove unsatisfiability of:

$$x \ge y, z \ge 0, yz > xz$$

Translated to system of equations:

$$x - y = a^2$$
, $z = b^2$, $(yz - xz)c^2 = 1$

Corresponding Gröbner basis:

$$B = \{a^2 - x + y, b^2 - z, xzc^2 - yzc^2 + 1\}$$

Pick basis monomials *p* and symmetric matrix *Q*:

$$p = \begin{pmatrix} 1 \\ a^2 \\ abc \end{pmatrix} \qquad Q = \begin{pmatrix} q_{1,1} & q_{1,2} & q_{1,3} \\ q_{1,2} & q_{2,2} & q_{2,3} \\ q_{1,3} & q_{2,3} & q_{3,3} \end{pmatrix}$$

$$p^{t}Qp = q_{1,1}1^{2} + 2q_{1,2}a^{2} + 2q_{1,3}abc + 2q_{2,3}a^{3}bc + q_{3,3}a^{2}b^{2}c^{2}$$

Example (2)

$$p^{t}Qp = q_{1,1}1^{2} + 2q_{1,2}a^{2} + 2q_{1,3}abc + 2q_{2,3}a^{3}bc + q_{3,3}a^{2}b^{2}c^{2}$$

Example (2)

$$p^{t}Qp = q_{1,1}1^{2} + 2q_{1,2}a^{2} + 2q_{1,3}abc + 2q_{2,3}a^{3}bc + q_{3,3}a^{2}b^{2}c^{2}$$
Reduce 1 + $p^{t}Qp$ w.r.t. B :
$$red_{B}(1 + p^{t}Qp) = 1 + q_{1,1} - q_{3,3} + 2q_{1,2}x - 2q_{1,2}y + 2q_{1,3}abc + 2q_{2,3}abcx - 2q_{2,3}abcy$$

Example (2)

$$p^{t}Qp = q_{1,1}1^{2} + 2q_{1,2}a^{2} + 2q_{1,3}abc + 2q_{2,3}a^{3}bc + q_{3,3}a^{2}b^{2}c^{2}$$

Reduce $1 + p^t Qp$ w.r.t. *B*:

$$red_B(1 + p^t Qp) = 1 + q_{1,1} - q_{3,3} + 2q_{1,2}x - 2q_{1,2}y + 2q_{1,3}abc + 2q_{2,3}abcx - 2q_{2,3}abcy$$

Set up semidefinite program $red_B(1 + p^t Qp) = 0$:

$$1 + q_{1,1} - q_{3,3} = 0$$
 $-2q_{1,2} = 0$ $2q_{2,3} = 0$ $2q_{1,2} = 0$ $-2q_{2,3} = 0$

Example (2)

$$p^{t}Qp = q_{1,1}1^{2} + 2q_{1,2}a^{2} + 2q_{1,3}abc + 2q_{2,3}a^{3}bc + q_{3,3}a^{2}b^{2}c^{2}$$

Reduce $1 + p^t Qp$ w.r.t. B:

$$red_B(1 + p^t Qp) = 1 + q_{1,1} - q_{3,3} + 2q_{1,2}x - 2q_{1,2}y + 2q_{1,3}abc + 2q_{2,3}abcx - 2q_{2,3}abcy$$

Set up semidefinite program $red_B(1 + p^t Qp) = 0$:

$$1 + q_{1,1} - q_{3,3} = 0$$
 $-2q_{1,2} = 0$ $2q_{2,3} = 0$ $2q_{1,3} = 0$ $-2q_{2,3} = 0$

Solve the program: $q_{3,3} = 1$ and $q_{i,j} = 0$ for all $(i,j) \neq (3,3)$

$$1 + p^t Qp = \underbrace{1 + (abc)^2}_{\text{Witness for unsatisfiability}} \in (B)$$

Gröbner Bases for the Real Nullstellensatz (GRN)

Properties of the procedure

- Sound + "complete" method for quantifier-free real arithmetic
- Sums of squares as certificates ("proof producing")
- Termination criteria can be given → decision procedure
- In practice:
 Enumerate basis monomials with ascending degree

Numerical issues

- Existing solvers for semidefinite programming are numeric (we use CSDP)
- Solution: Solve program numerically, then round to exact solution [Harrison, 2007]

Pre-processing of Gröbner basis is a good idea:

• Rewriting with polynomials x + t (where $x \notin t$)

Pre-processing of Gröbner basis is a good idea:

• Rewriting with polynomials x + t (where $x \notin t$) $\rightsquigarrow x$ and polynomial can be eliminated

- Rewriting with polynomials x + t (where $x \notin t$) $\rightarrow x$ and polynomial can be eliminated
- Rewriting with polynomials $\alpha_0^2 x^2 \alpha_1 m_1^2 \cdots \alpha_n m_n^2$ (where $\alpha_i > 0$ and x only with even degree elsewhere)

- Rewriting with polynomials x + t (where $x \notin t$) $\rightsquigarrow x$ and polynomial can be eliminated
- Rewriting with polynomials $\alpha_0^2 x^2 \alpha_1 m_1^2 \cdots \alpha_n m_n^2$ (where $\alpha_i > 0$ and x only with even degree elsewhere) $\rightarrow x$ and polynomial can be eliminated

- Rewriting with polynomials x + t (where $x \notin t$) $\rightarrow x$ and polynomial can be eliminated
- Rewriting with polynomials $\alpha_0^2 x^2 \alpha_1 m_1^2 \cdots \alpha_n m_n^2$ (where $\alpha_i > 0$ and x only with even degree elsewhere) $\rightarrow x$ and polynomial can be eliminated
- Elimination of polynomials xy 1, $x^n + t$ (where $x^n \not| t$)

- Rewriting with polynomials x + t (where $x \notin t$) $\rightarrow x$ and polynomial can be eliminated
- Rewriting with polynomials $\alpha_0^2 x^2 \alpha_1 m_1^2 \cdots \alpha_n m_n^2$ (where $\alpha_i > 0$ and x only with even degree elsewhere) $\rightarrow x$ and polynomial can be eliminated
- Elimination of polynomials xy 1, $x^n + t$ (where $x^n \nmid t$) $\rightarrow x$ and polynomial xy 1 can be eliminated by multiplying all polynomials with some y^m and reducing with xy 1

- Rewriting with polynomials x + t (where $x \notin t$) $\rightsquigarrow x$ and polynomial can be eliminated
- Rewriting with polynomials $\alpha_0^2 x^2 \alpha_1 m_1^2 \cdots \alpha_n m_n^2$ (where $\alpha_i > 0$ and x only with even degree elsewhere) $\rightarrow x$ and polynomial can be eliminated
- Elimination of polynomials xy 1, $x^n + t$ (where $x^n \not| t$) $\rightarrow x$ and polynomial xy 1 can be eliminated by multiplying all polynomials with some y^m and reducing with xy 1
- Splitting polynomials $\alpha_1 m_1^2 + \cdots + \alpha_n m_n^2 \in B$ with $\alpha_i > 0$

- Rewriting with polynomials x + t (where $x \notin t$) $\rightarrow x$ and polynomial can be eliminated
- Rewriting with polynomials $\alpha_0^2 x^2 \alpha_1 m_1^2 \cdots \alpha_n m_n^2$ (where $\alpha_i > 0$ and x only with even degree elsewhere) $\rightsquigarrow x$ and polynomial can be eliminated
- Elimination of polynomials xy 1, $x^n + t$ (where $x^n \not| t$) $\rightarrow x$ and polynomial xy 1 can be eliminated by multiplying all polynomials with some y^m and reducing with xy 1
- Splitting polynomials $\alpha_1 m_1^2 + \cdots + \alpha_n m_n^2 \in B$ with $\alpha_i > 0$ \rightsquigarrow replace by m_1, \ldots, m_n

Outline

- Overview
- First-order Real Arithmetic
 - Syntax
 - Semantics
 - Quantifier Elimination
- Gröbner Bases
- Real Nullstellensatz
- 5 Experiments

Other Approaches

Positivstellensatz methods [Parrilo, 2003; Harrison, 2007]:

- Positivstellensatz [Stengle, 1973]:
 Extension of Real Nullstellensatz for inequalities
- Differences: Gröbner bases, simpler certificates

Tiwari's method [Tiwari, 2005]:

 Differences: less heuristic ⇒ completeness, semidefinite programming

Proof-producing quantifier elimination

[McLaughlin, Harrison, 2005]:

 Differences: universal fragment vs. full real arithmetic, performance

Numeric methods:

Differences: soundness + completeness

Empirical Comparison of Decision Procedures

Gröbner basis approaches

• **GM**, **GO**: pure Gröbner bases (inequalities → equations)

• **GK**: Gröbner bases combined with Fourier-Motzkin

GRN: Gröbner bases for the Real Nullstellensatz

Quantifier elimination procedures

• **QQ**, **QM**, **QR**_c: cylindrical algebraic decomposition (CAD)

• **QR**_s: CAD + virtual substitution

• QC, QH: Cohen-Hörmander

Semidefinite programming for the Positivstellensatz

• PH: Harrison's implementation

• **PK**: our implementation in KeYmaera

Benchmarks: 100 problems taken from ...

- Case studies in hybrid systems verification
- Verification of mathematical algorithms, geometry
- (A few) synthetic problems

Experiments

