André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

}

throw new NoSuchElementException();

© Motivation

o Basic Invariant Rule
e Anonymising Update
@ Improved Invariant Rule

© Literature

© Motivation

[= U[rif (o) {p; while (b) p} w]p, A

indL
unwindLoop [= U[r while (®) p w]¢,A

[= U[rif (o) {p; while (b) p} w]p, A

unwindL
windLoop [= U[r while (®) p w]¢,A

How to handle a loop with. ..

@ 0 iterations?

[= U[rif (o) {p; while (b) p} w]p, A

unwindL
windLoop [= U[r while (®) p w]¢,A

How to handle a loop with. ..

@ 0 iterations? Unwind 1x

[= U[rif (o) {p; while (b) p} w]p, A

unwindL
windLoop [= U[r while (®) p w]¢,A

How to handle a loop with. ..
@ 0 iterations? Unwind 1x

@ 10 iterations?

[= U[rif (o) {p; while (b) p} w]p, A

unwindL
indLoop [= U[r while (b) p w]g,A

How to handle a loop with. ..
@ 0 iterations? Unwind 1x
@ 10 iterations? Unwind 11x

[= U[rif (o) {p; while (b) p} w]p, A

unwindL
indLoop [= U[r while (b) p w]g,A

How to handle a loop with. ..
o 0 iterations? Unwind 1x
@ 10 iterations? Unwind 11x
@ 10000 iterations?

[= U[rif (o) {p; while (b) p} w]p, A

indL
unwindLoop I = U[r while (b) pw]d, A

How to handle a loop with. ..
@ 0 iterations? Unwind 1x
@ 10 iterations? Unwind 11x

@ 10000 iterations? Unwind 10001 x
(and don't make any plans for the rest of the day)

[= U[rif (o) {p; while (b) p} w]p, A

indL
unwindLoop I = U[r while (b) pw]d, A

How to handle a loop with. ..
@ 0 iterations? Unwind 1x
@ 10 iterations? Unwind 11x

@ 10000 iterations? Unwind 10001 x
(and don't make any plans for the rest of the day)

@ an unknown number of iterations?

[= U[rif (o) {p; while (b) p} w]p, A

indL
unwindLoop I = U[r while (b) pw]d, A

How to handle a loop with. ..
@ 0 iterations? Unwind 1x
@ 10 iterations? Unwind 11x

@ 10000 iterations? Unwind 10001 x
(and don't make any plans for the rest of the day)

@ an unknown number of iterations?

We need an invariant rule (or some other form of induction) J

o Basic Invariant Rule

@ A formula /nv whose validity is preserved by loop guard and body

@ Consequence: if Inv was valid at start of the loop, then it still holds
after arbitrarily many loop iterations

@ If the loop terminates at all, then /nv holds afterwards

@ Encode the desired postcondition after loop into Inv

@ A formula /nv whose validity is preserved by loop guard and body

@ Consequence: if Inv was valid at start of the loop, then it still holds
after arbitrarily many loop iterations

@ If the loop terminates at all, then /nv holds afterwards

@ Encode the desired postcondition after loop into Inv

looplnvariant

= U[r while (b) pw]p, A

@ A formula /nv whose validity is preserved by loop guard and body

@ Consequence: if Inv was valid at start of the loop, then it still holds
after arbitrarily many loop iterations

@ If the loop terminates at all, then /nv holds afterwards

@ Encode the desired postcondition after loop into Inv

= Ulnv,A (initially valid)

looplnvariant
= U[r while (b) pw]p,A

@ A formula /nv whose validity is preserved by loop guard and body

@ Consequence: if Inv was valid at start of the loop, then it still holds
after arbitrarily many loop iterations

@ If the loop terminates at all, then /nv holds afterwards

@ Encode the desired postcondition after loop into Inv

= Ulnv,A (initially valid)
Inv, b = TRUE = [p]/nv (preserved)

looplnvariant
= U[r while (b) pw]p,A

@ A formula /nv whose validity is preserved by loop guard and body

@ Consequence: if Inv was valid at start of the loop, then it still holds
after arbitrarily many loop iterations

@ If the loop terminates at all, then /nv holds afterwards

@ Encode the desired postcondition after loop into Inv

= Ulnv,A (initially valid)
Inv, b = TRUE = [p]/nv (preserved)
Inv, b =FALSE = [1 w]¢p (use case)

looplnvariant

= U[r while (b) pw]p,A

= Ulnv,A (initially valid)
Inv, b = TRUE => [p|/nv (preserved)
Inv, b =FALSE = [T w|¢p (use case)
= U[m while (b) pw]p, A

looplnvariant

= Ulnv,A (initially valid)
Inv, b = TRUE => [p|/nv (preserved)
Inv, b =FALSE = [t w]¢p (use case)

looplnvariant
I = U[r while (b) p w|p, A

o Context I', A, U must be omitted in 2nd and 3rd premise:

I, A in general don't hold in state defined by ¢/
2nd premise Inv must be invariant for any state, not only U
3rd premise We don’t know the state after the loop exits

= Ulnv,A (initially valid)
Inv, b = TRUE => [p|/nv (preserved)
Inv, b =FALSE = [t w]¢p (use case)

looplnvariant
I = U[r while (b) p w|p, A

o Context I', A, U must be omitted in 2nd and 3rd premise:

I, A in general don't hold in state defined by ¢/
2nd premise Inv must be invariant for any state, not only U
3rd premise We don’t know the state after the loop exits

@ But: context contains (part of) precondition and class invariants

= Ulnv,A (initially valid)
Inv, b = TRUE => [p|/nv (preserved)
Inv, b =FALSE = [t w]¢p (use case)

looplnvariant
[= U[r while (b) pw]p, A

o Context I', A, U must be omitted in 2nd and 3rd premise:

I, A in general don't hold in state defined by ¢/
2nd premise Inv must be invariant for any state, not only U
3rd premise We don’t know the state after the loop exits

@ But: context contains (part of) precondition and class invariants

@ Required context information must be added to loop invariant /nv

int i = O;

while(i < a.length) {
ali]l = 1;
it++;

Precondition: !'a = null

int i = O;

while(i < a.length) {
ali]l = 1;
i++;

Precondition: !'a = null

int i = O;

while(i < a.length) {
ali]l = 1;
i++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Precondition: !'a = null

int i = O;

while(i < a.length) {
ali]l = 1;
i++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loop invariant: 0 <i & i < a.length

Precondition: !'a = null

int i = O;

while(i < a.length) {
ali]l = 1;
i++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loop invariant: 0 <i & i < a.length
& Vint x; (0<x<i—>alx] =1)

Precondition: !a = null

int i = O;

while(i < a.length) {
ali]l = 1;
i++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loop invariant: 0 <i & i < a.length
& Vint x; (0 < x<i-—=>alx] =1)
& 'a=null

Precondition: !'a = null & Class/nv

int i = O;

while(i < a.length) {
ali]l = 1;
i++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loop invariant: 0 <i & i < a.length
& Vint x; (0<x<i—>alx] =1)
& la=null
& Classinv'

o
o
e Anonymising Update
o
o

@ Want to keep part of the context that is unmodified by loop

@ Want to keep part of the context that is unmodified by loop

@ assignable clauses for loops can tell what might be modified

@ assignable i, a[*]; J

@ Want to keep part of the context that is unmodified by loop

@ assignable clauses for loops can tell what might be modified

@ assignable i, a[*]; J

@ How to erase all values of assignable locations in formula ' 7

@ Want to keep part of the context that is unmodified by loop

@ assignable clauses for loops can tell what might be modified

@ assignable i, a[*]; J

@ How to erase all values of assignable locations in formula ' 7

Analogous situation: V-Right quantifier rule = Vx; ¢
Replace x with a fresh constant *

To change value of program location use update, not substitution

@ Want to keep part of the context that is unmodified by loop

@ assignable clauses for loops can tell what might be modified

@ assignable i, a[*]; J

@ How to erase all values of assignable locations in formula ' 7

Analogous situation: V-Right quantifier rule = Vx; ¢
Replace x with a fresh constant *

To change value of program location use update, not substitution

@ Anonymising updates V erase information about modified locations

V = {i:=x|| \for x; alx] :=*} |

@ Improved Invariant Rule

[= U[r while (b) p w]|ep, A

= Ulnv,A (initially valid)

[= U[r while (b) p w]|ep, A

= Ulnv,A (initially valid)
= UV(Inv & b=TRUE —> [p]/nv),A (preserved)

[= U[r while (b) p w]ep, A

= Ulnv,A (initially valid)
= UV(Inv & b=TRUE —> [p]/nv),A (preserved)
= UV(Inv & b =FALSE —> [r w]p),A (use case)

I = U[r while (b) p w|p, A

= Ulnv,A (initially valid)
= UV(Inv & b=TRUE —> [p]/nv),A (preserved)
= UV(Inv & b =FALSE —> [r w]p),A (use case)

I = U[r while (b) p w|p, A

@ Context is kept as far as possible
@ Invariant does not need to include unmodified locations
@ For assignable \everything (the default):

e V = {% := x} wipes out all information

e Equivalent to basic invariant rule
e Avoid this! Always give a specific assignable clause

int i = O;

while(i < a.length) {
alil = 1;
i++;

Precondition: !a = null

int i = O;

while(i < a.length) {
alil = 1;
it++;

Precondition: !a = null

int i = O;

while(i < a.length) {
alil = 1;
it++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] = 1)

Precondition: !a = null

int i = O;

while(i < a.length) {
alil = 1;
it++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] = 1)

Loop invariant: 0 < i & i < a.length

Precondition: !a = null

int i = O;

while(i < a.length) {
alil = 1;
it++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loop invariant: 0 <i & i < a.length
& Vint x; (0<x<i—>alx] =1)

Precondition: !a = null

int i = O;

while(i < a.length) {
alil = 1;
it++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] = 1)

Loop invariant: 0 <i & i < a.length
& Vint x; (0 <x<i—>alx] =1)

Precondition: !a = null & Classinv

int i = O;

while(i < a.length) {
alil = 1;
it++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] = 1)

Loop invariant: 0 <i & i < a.length
& Vint x; (0 <x<i—>alx] =1)

public int[] a;
/*@ public normal_behavior
@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@ diverges true;
Qx/
public void m() {
int i = O;
/*@ loop_invariant
@ (0 <=1 & i <= a.length &&
6] (\forall int x; O0<=x && x<i; al[x]==1));
Q@ assignable i, al[*];
@x/
while(i < a.length) {
ali] = 1;
i++;
}
lll-.lll

@ The invariant rule assumes that assignable is correct
E.g., with assignable \nothing; one can prove nonsense

@ Invariant rule of KeY generates proof obligation that ensures
correctness of assignable

@ The invariant rule assumes that assignable is correct
E.g., with assignable \nothing; one can prove nonsense

@ Invariant rule of KeY generates proof obligation that ensures
correctness of assignable

@ Loop treatment: Invariant

@ Quantifier treatment: No Splits with Progs

@ If program contains *, /:
Arithmetic treatment: DefOps

@ Is search limit high enough (time out, rule apps.)?

@ When proving partial correctness, add diverges true;

Add the following premisses to the invariant rule:

@ v > 0 is initially valid
@ v > 0 is preserved by the loop body
@ v is strictly decreased by the loop body

Add the following premisses to the invariant rule:

@ v > 0 is initially valid
@ v > 0 is preserved by the loop body
@ v is strictly decreased by the loop body

Remove directive diverges true;

Add directive decreasing v; to loop invariant
KeY creates suitable invariant rule and PO (with (...)¢)

Add the following premisses to the invariant rule:

@ v > 0 is initially valid
@ v > 0 is preserved by the loop body
@ v is strictly decreased by the loop body

@ Remove directive diverges true;

@ Add directive decreasing v; to loop invariant
@ KeY creates suitable invariant rule and PO (with (...)¢)

Example (Same loop as above)

@ decreasing

Add the following premisses to the invariant rule:

@ v > 0 is initially valid
@ v > 0 is preserved by the loop body
@ v is strictly decreased by the loop body

@ Remove directive diverges true;

@ Add directive decreasing v; to loop invariant
@ KeY creates suitable invariant rule and PO (with (...)¢)

Example (Same loop as above)

@ decreasing a.length - i;

public int[] a;

/*@ public normal_behavior
@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@x/

public void m() {
int i = O;
/*@ loop_invariant
@ (0 <=1 && i <= a.length &&
@ (\forall int x; O0<=x && x<i; alx]==1));
Q@ decreasing a.length - i;
@ assignable i, al[*];
Qx/
while(i < a.length) {
ali] = 1;
i++;
}
S EEPEEE MU 15.819M/11: Data, Code, Decisions DTS

Literature

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic (Section 3.7)

	Motivation
	Basic Invariant Rule
	Anonymising Update
	Improved Invariant Rule
	Literature

