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[ = U[rif (o) {p; while (b) p} w]p, A

indL
unwindLoop I = U[r while (b) pw]d, A

How to handle a loop with. ..
@ 0 iterations? Unwind 1x
@ 10 iterations? Unwind 11x

@ 10000 iterations? Unwind 10001 x
(and don't make any plans for the rest of the day)

@ an unknown number of iterations?

We need an invariant rule (or some other form of induction) J
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= Ulnv,A (initially valid)
Inv, b = TRUE => [p|/nv (preserved)
Inv, b =FALSE = [t w]¢p  (use case)

looplnvariant
[ = U[r while (b) pw]p, A

o Context I', A, U must be omitted in 2nd and 3rd premise:

I, A in general don't hold in state defined by ¢/
2nd premise Inv must be invariant for any state, not only U
3rd premise We don’t know the state after the loop exits

@ But: context contains (part of) precondition and class invariants

@ Required context information must be added to loop invariant /nv
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Postcondition: Vint x; (0 < x < a.length — a[x] =1)
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Precondition: !'a = null & Class/nv

int i = O;

while(i < a.length) {
ali]l = 1;
i++;

3

Postcondition: Vint x; (0 < x < a.length — a[x] =1)

Loop invariant: 0 <i & i < a.length
& Vint x; (0<x<i—>alx] =1)
& la=null
& Classinv'
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@ Want to keep part of the context that is unmodified by loop

@ assignable clauses for loops can tell what might be modified

@ assignable i, a[*]; J

@ How to erase all values of assignable locations in formula ' 7

Analogous situation: V-Right quantifier rule = Vx; ¢
Replace x with a fresh constant *

To change value of program location use update, not substitution

@ Anonymising updates V erase information about modified locations

V = {i:=x|| \for x; alx] :=*} |
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= Ulnv,A (initially valid)
= UV(Inv & b=TRUE —> [p]/nv),A (preserved)
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= Ulnv,A (initially valid)
= UV(Inv & b=TRUE —> [p]/nv),A (preserved)
= UV(Inv & b =FALSE —> [r w]p),A (use case)

I = U[r while (b) p w|p, A

@ Context is kept as far as possible
@ Invariant does not need to include unmodified locations
@ For assignable \everything (the default):

e V = {% := x} wipes out all information

e Equivalent to basic invariant rule
e Avoid this! Always give a specific assignable clause
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Precondition: !a = null & Classinv

int i = O;

while(i < a.length) {
alil = 1;
it++;
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Postcondition: Vint x; (0 < x < a.length — a[x] = 1)

Loop invariant: 0 <i & i < a.length
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public int[] a;
/*@ public normal_behavior
@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@ diverges true;
Qx/
public void m() {
int i = O;
/*@ loop_invariant
@ (0 <=1 & i <= a.length &&
6] (\forall int x; O0<=x && x<i; al[x]==1));
Q@ assignable i, al[*];
@x/
while(i < a.length) {
ali] = 1;
i++;
}
lll-.lllllllllllllllllllllllllllllllllllllllllllllllll



@ The invariant rule assumes that assignable is correct
E.g., with assignable \nothing; one can prove nonsense

@ Invariant rule of KeY generates proof obligation that ensures
correctness of assignable




@ The invariant rule assumes that assignable is correct
E.g., with assignable \nothing; one can prove nonsense

@ Invariant rule of KeY generates proof obligation that ensures
correctness of assignable

@ Loop treatment: Invariant

@ Quantifier treatment: No Splits with Progs

@ If program contains *, /:
Arithmetic treatment: DefOps

@ Is search limit high enough (time out, rule apps.)?

@ When proving partial correctness, add diverges true;
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Add the following premisses to the invariant rule:

@ v > 0 is initially valid
@ v > 0 is preserved by the loop body
@ v is strictly decreased by the loop body

@ Remove directive diverges true;

@ Add directive decreasing v; to loop invariant
@ KeY creates suitable invariant rule and PO (with (...)¢)

Example (Same loop as above)

@ decreasing a.length - i;




public int[] a;

/*@ public normal_behavior
@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@x/

public void m() {
int i = O;
/*@ loop_invariant
@ (0 <=1 && i <= a.length &&
@ (\forall int x; O0<=x && x<i; alx]==1));
Q@ decreasing a.length - i;
@ assignable i, al[*];
Qx/
while(i < a.length) {
ali] = 1;
i++;
}
S EEPEEE MU 15.819M/11: Data, Code, Decisions DTS
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KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic (Section 3.7)
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