
15-819M: Data, Code, Decisions
08: Reasoning about Java Programs with Dynamic Logic

André Platzer

aplatzer@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 1 / 25

Outline

1 Java DL
Java Type Hierarchy
Modeling OO Programs
Self
Object Creation

2 Quantified Updates
3 Round Tour

Java Programs
Arrays
Side Effects
Abrupt Termination
Aliasing
Method Calls
Null Pointers
Initialization
API
API

4 Summary
5 Literature

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 1 / 25

Outline

1 Java DL
Java Type Hierarchy
Modeling OO Programs
Self
Object Creation

2 Quantified Updates
3 Round Tour

Java Programs
Arrays
Side Effects
Abrupt Termination
Aliasing
Method Calls
Null Pointers
Initialization
API
API

4 Summary
5 Literature

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 1 / 25

Java Type Hierarchy

Signature based on Java’s type hierarchy

>

⊥

booleaninteger

shortint

· · ·

· · ·

Object

API, user-defined classes

Null

Each class referenced in API and target program is in signature
with appropriate partial order

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 2 / 25

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

Each o ∈ DPerson has associated age value

I(age) is function from Person to int

Attribute values can be changed

For each class C with attribute a of type T :
FSymnr declares flexible function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 3 / 25

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

Each o ∈ DPerson has associated age value

I(age) is function from Person to int

Attribute values can be changed

For each class C with attribute a of type T :
FSymnr declares flexible function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 3 / 25

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

Each o ∈ DPerson has associated age value

I(age) is function from Person to int

Attribute values can be changed

For each class C with attribute a of type T :
FSymnr declares flexible function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 3 / 25

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

Each o ∈ DPerson has associated age value

I(age) is function from Person to int

Attribute values can be changed

For each class C with attribute a of type T :
FSymnr declares flexible function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 3 / 25

Modelling Attributes in FOL

Modeling instance attributes

Person
int age
int id

int setAge(int i)
int getId()

Each o ∈ DPerson has associated age value

I(age) is function from Person to int

Attribute values can be changed

For each class C with attribute a of type T :
FSymnr declares flexible function T a(C);

Attribute Access

Signature FSymnr : int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation p.age >= 0

Navigation expressions in typed FOL look exactly as in Java/JML

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 3 / 25

Modeling Attributes in FOL

Properties of attributes

When not initialized, I(a) = null

Overloading can be resolved by qualifying with class path:
Person::p.age

Changing the value of attributes

How to translate assignment to attribute p.age=17;?

assign
Γ =⇒ {l := t}〈rest〉φ,∆
Γ =⇒ 〈l = t; rest〉φ,∆

Admit on left-hand side of update program location expressions

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 4 / 25

Modeling Attributes in FOL

Properties of attributes

When not initialized, I(a) = null

Overloading can be resolved by qualifying with class path:
Person::p.age

Changing the value of attributes

How to translate assignment to attribute p.age=17;?

assign
Γ =⇒ {p.age := 17}〈rest〉φ,∆
Γ =⇒ 〈p.age = 17; rest〉φ,∆

Admit on left-hand side of update program location expressions

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 4 / 25

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

Signature FSymnr : C a(C); C b(C); C o;

Consider {o.a := o}{o.b := o.a}
First update may affect left side of second update

o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 5 / 25

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

Signature FSymnr : C a(C); C b(C); C o;

Consider {o.a := o}{o.b := o.a}

First update may affect left side of second update

o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 5 / 25

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

Signature FSymnr : C a(C); C b(C); C o;

Consider {o.a := o}{o.b := o.a}
First update may affect left side of second update

o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 5 / 25

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

Signature FSymnr : C a(C); C b(C); C o;

Consider {o.a := o}{o.b := o.a}
First update may affect left side of second update

o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 5 / 25

A Warning

Computing the effect of updates with attribute locations is complex

Example

C

C a
C b

Signature FSymnr : C a(C); C b(C); C o;

Consider {o.a := o}{o.b := o.a}
First update may affect left side of second update

o.a and o.b might refer to same object (be aliases)

KeY applies rules automatically, you don’t need to worry about details

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 5 / 25

Modeling Static Attributes in FOL

Modeling class (static) attributes

For each class C with static attribute a of type T :
FSymnr declares flexible constant T a;

Value of a is I(a) for all instances of C

If necessary, qualify with class (path):
byte java.lang.Byte.MAX_VALUE

Standard values are predefined in KeY:
I(java.lang.Byte.MAX_VALUE) = 127

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 6 / 25

The Self Reference

Modeling reference this to the receiving object

Special name for the object whose Java code is currently executed:

in JML: Object self;

in Java: Object this;

in KeY: Object self;

Default assumption in JML-KeY translation: !(self = null)

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 7 / 25

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states of LTS K = (S , ρ)

Desirable consequence:
Validity of rigid FOL formulas unaffected by programs

|= ∀T x ; φ −> [p](∀T x ; φ) is valid for rigid φ

Realizing Constant Domain Assumption

flexible function boolean <created>(Object);

Equal to true iff argument object has been created

Initialized as I(<created>)(o) = F for all o ∈ D
Object creation modeled as {o.<created> := true} for next “free” o

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 8 / 25

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states of LTS K = (S , ρ)

Desirable consequence:
Validity of rigid FOL formulas unaffected by programs

|= ∀T x ; φ −> [p](∀T x ; φ) is valid for rigid φ

Realizing Constant Domain Assumption

flexible function boolean <created>(Object);

Equal to true iff argument object has been created

Initialized as I(<created>)(o) = F for all o ∈ D
Object creation modeled as {o.<created> := true} for next “free” o

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 8 / 25

Which Objects do Exist?

How to model object creation with new ?

Constant Domain Assumption

Assume that domain D is the same in all states of LTS K = (S , ρ)

Desirable consequence:
Validity of rigid FOL formulas unaffected by programs

|= ∀T x ; φ −> [p](∀T x ; φ) is valid for rigid φ

Realizing Constant Domain Assumption

flexible function boolean <created>(Object);

Equal to true iff argument object has been created

Initialized as I(<created>)(o) = F for all o ∈ D
Object creation modeled as {o.<created> := true} for next “free” o

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 8 / 25

Outline

1 Java DL
Java Type Hierarchy
Modeling OO Programs
Self
Object Creation

2 Quantified Updates
3 Round Tour

Java Programs
Arrays
Side Effects
Abrupt Termination
Aliasing
Method Calls
Null Pointers
Initialization
API
API

4 Summary
5 Literature

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 8 / 25

Quantified Updates

Initialization of all objects in a given class C

C
int a

Specify that default value of attribute int a(C) is 0

Can use ∀ C o; o.a
.

= 0 in premise

Problem: difficult to exploit for update simplification

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

{\for T x; \if P; l := r}

For all objects d in DT such that βd
x |= P

perform the updates {l := r} under βd
x in parallel

If there are several l with conflicting d then choose T -minimal one

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 9 / 25

Quantified Updates

Initialization of all objects in a given class C

C
int a

Specify that default value of attribute int a(C) is 0

Can use ∀ C o; o.a
.

= 0 in premise

Problem: difficult to exploit for update simplification

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

{\for T x; \if P; l := r}

For all objects d in DT such that βd
x |= P

perform the updates {l := r} under βd
x in parallel

If there are several l with conflicting d then choose T -minimal one

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 9 / 25

Quantified Updates

Initialization of all objects in a given class C

C
int a

Specify that default value of attribute int a(C) is 0

Can use ∀ C o; o.a
.

= 0 in premise

Problem: difficult to exploit for update simplification

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

{\for T x; \if P; l := r}

For all objects d in DT such that βd
x |= P

perform the updates {l := r} under βd
x in parallel

If there are several l with conflicting d then choose T -minimal one

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 9 / 25

Quantified Updates

Initialization of all objects in a given class C

C
int a

Specify that default value of attribute int a(C) is 0

Can use ∀ C o; o.a
.

= 0 in premise

Problem: difficult to exploit for update simplification

Definition (Quantified Update)

For T well-ordered type (no ∞ descending chains): quantified update:

{\for T x; \if P; l := r}

For all objects d in DT such that βd
x |= P

perform the updates {l := r} under βd
x in parallel

If there are several l with conflicting d then choose T -minimal one

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 9 / 25

Quantified Updates

The conditional expression is optional

Typically, x occurs in P, l, and r (but doesn’t need to)

There is a normal form for updates computed efficiently by KeY

Example (Integer types are well-ordered in KeY)

\exists int n; ({\for int i; l := i}(l = n))

Is valid both for Java int and ZZ (n
.

= 0 non-standard order)

Proven automatically by update simplifier

lect13/update.key Demo

Example (Initialization of field a for all objects in class C)

{\for T o; o.a := 0}

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 10 / 25

Quantified Updates

The conditional expression is optional

Typically, x occurs in P, l, and r (but doesn’t need to)

There is a normal form for updates computed efficiently by KeY

Example (Integer types are well-ordered in KeY)

\exists int n; ({\for int i; l := i}(l = n))

Is valid both for Java int and ZZ (n
.

= 0 non-standard order)

Proven automatically by update simplifier

lect13/update.key Demo

Example (Initialization of field a for all objects in class C)

{\for T o; o.a := 0}

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 10 / 25

Quantified Updates

The conditional expression is optional

Typically, x occurs in P, l, and r (but doesn’t need to)

There is a normal form for updates computed efficiently by KeY

Example (Integer types are well-ordered in KeY)

\exists int n; ({\for int i; l := i}(l = n))

Is valid both for Java int and ZZ (n
.

= 0 non-standard order)

Proven automatically by update simplifier

lect13/update.key Demo

Example (Initialization of field a for all objects in class C)

{\for T o; o.a := 0}

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 10 / 25

Outline

1 Java DL
Java Type Hierarchy
Modeling OO Programs
Self
Object Creation

2 Quantified Updates
3 Round Tour

Java Programs
Arrays
Side Effects
Abrupt Termination
Aliasing
Method Calls
Null Pointers
Initialization
API
API

4 Summary
5 Literature

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 10 / 25

Extending Dynamic Logic to Java

Any syntactically correct Java program (plus some extensions)

Needs not be compilable unit

Permit externally declared, non-initialized variables

Referenced class definitions loaded in background

And some limitations . . .

No concurrency

No generics

No Strings

No I/O

No floats

No dynamic class loading or reflexion (meta-programming)

API method calls: need either JML contract or implementation

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 11 / 25

Java Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

Java type hierarchy includes array types
that occur in given program

Types ordered according to Java subtyping rules

flexible functions modeling attributes can have array
type

Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

Model array with flexible function T [](C,int)

Instead of [](ar,i) write ar[i]

Arrays a and b can refer to same object (aliases)

KeY implements update application and simplification
rules for array locations

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 12 / 25

Java Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

Java type hierarchy includes array types
that occur in given program

Types ordered according to Java subtyping rules

flexible functions modeling attributes can have array
type

Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

Model array with flexible function T [](C,int)

Instead of [](ar,i) write ar[i]

Arrays a and b can refer to same object (aliases)

KeY implements update application and simplification
rules for array locations

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 12 / 25

Java Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

Java type hierarchy includes array types
that occur in given program

Types ordered according to Java subtyping rules

flexible functions modeling attributes can have array
type

Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

Model array with flexible function T [](C,int)

Instead of [](ar,i) write ar[i]

Arrays a and b can refer to same object (aliases)

KeY implements update application and simplification
rules for array locations

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 12 / 25

Java Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

Java type hierarchy includes array types
that occur in given program

Types ordered according to Java subtyping rules

flexible functions modeling attributes can have array
type

Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

Model array with flexible function T [](C,int)

Instead of [](ar,i) write ar[i]

Arrays a and b can refer to same object (aliases)

KeY implements update application and simplification
rules for array locations

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 12 / 25

Java Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

Java type hierarchy includes array types
that occur in given program

Types ordered according to Java subtyping rules

flexible functions modeling attributes can have array
type

Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

Model array with flexible function T [](C,int)

Instead of [](ar,i) write ar[i]

Arrays a and b can refer to same object (aliases)

KeY implements update application and simplification
rules for array locations

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 12 / 25

Java Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

Java type hierarchy includes array types
that occur in given program

Types ordered according to Java subtyping rules

flexible functions modeling attributes can have array
type

Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

Model array with flexible function T [](C,int)

Instead of [](ar,i) write ar[i]

Arrays a and b can refer to same object (aliases)

KeY implements update application and simplification
rules for array locations

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 12 / 25

Java Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

Java type hierarchy includes array types
that occur in given program

Types ordered according to Java subtyping rules

flexible functions modeling attributes can have array
type

Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

Model array with flexible function T [](C,int)

Instead of [](ar,i) write ar[i]

Arrays a and b can refer to same object (aliases)

KeY implements update application and simplification
rules for array locations

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 12 / 25

Java Dynamic Logic: Arrays

Arrays

>

⊥

Object

Object[]

Object[][]

Java type hierarchy includes array types
that occur in given program

Types ordered according to Java subtyping rules

flexible functions modeling attributes can have array
type

Value of entry in array T[] ar; defined in class C
depends on reference ar to array in C and index

Model array with flexible function T [](C,int)

Instead of [](ar,i) write ar[i]

Arrays a and b can refer to same object (aliases)

KeY implements update application and simplification
rules for array locations

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 12 / 25

Java Dynamic Logic: Complex Expressions

Complex expressions with side effects

Java expressions may contain assignment operator with side effect

FOL terms have no side effect on the state

Java expressions can be complex and nested

Example (Complex expression with side effects in Java)

int i = 0; if ((i=2)>= 2) i++; value of i ?

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 13 / 25

Complex Expressions by Symbolic Execution

Decomposition of complex terms by symbolic execution

Follow the rules laid down in Java Language Specification

Local code transformations

evalOrderIteratedAssgnmt
Γ =⇒ 〈y = t; x = y; rest〉φ,∆

Γ =⇒ 〈x = y = t; rest〉φ,∆
t simple

Temporary variables store result of evaluating subexpression

ifEval
Γ =⇒ 〈boolean v0; v0 = b; if (v0) p; r〉φ,∆

Γ =⇒ 〈 if (b) p; r〉φ,∆
b complex

Guards of conditionals/loops always evaluated (hence: side effect-free)
before conditional/unwind rules applied

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 14 / 25

Java Dynamic Logic: Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

〈π try ξ p catch(e) q finally r; ω〉φ

Rules ignore inactive prefix, work on active statement, leave postfix

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒ 〈π if (e instanceof T) {try x=e;q finally r} else {r; throw e};ω〉φ
=⇒ 〈π try {throw e; p} catch(T x) q finally r; ω〉φ

Demo
lect13/exc2.key

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 15 / 25

Java Dynamic Logic: Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

〈π try ξ p catch(e) q finally r; ω〉φ

Rules ignore inactive prefix, work on active statement, leave postfix

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒ 〈π if (e instanceof T) {try x=e;q finally r} else {r; throw e};ω〉φ
=⇒ 〈π try {throw e; p} catch(T x) q finally r; ω〉φ

Demo
lect13/exc2.key

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 15 / 25

Java Dynamic Logic: Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

〈π try ξ p catch(e) q finally r; ω〉φ

Rules ignore inactive prefix, work on active statement, leave postfix

Rule tryThrow matches try–catch in pre-/postfix and active throw

=⇒ 〈π if (e instanceof T) {try x=e;q finally r} else {r; throw e};ω〉φ
=⇒ 〈π try {throw e; p} catch(T x) q finally r; ω〉φ

Demo
lect13/exc2.key

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 15 / 25

Java Dynamic Logic: Aliasing

Reference Aliasing

Naive alias resolution causes proof split (on o
.

= u) at each access

=⇒ o.age
.

= 1 −> 〈u.age = 2;〉o.age .
= u.age

Unnecessary case analyses

=⇒ o.age
.

= 1 −> 〈u.age = 2; o.age = 2;〉o.age .
= u.age

=⇒ o.age
.

= 1 −> 〈u.age = 2;〉u.age .
= 2

Updates avoid case analyses— Demo lect13/alias2.key

Delayed state computation until clear what is required

Eager simplification of updates

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 16 / 25

Java Dynamic Logic: Aliasing

Reference Aliasing

Naive alias resolution causes proof split (on o
.

= u) at each access

=⇒ o.age
.

= 1 −> 〈u.age = 2;〉o.age .
= u.age

Unnecessary case analyses

=⇒ o.age
.

= 1 −> 〈u.age = 2; o.age = 2;〉o.age .
= u.age

=⇒ o.age
.

= 1 −> 〈u.age = 2;〉u.age .
= 2

Updates avoid case analyses— Demo lect13/alias2.key

Delayed state computation until clear what is required

Eager simplification of updates

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 16 / 25

Java Dynamic Logic: Aliasing

Reference Aliasing

Naive alias resolution causes proof split (on o
.

= u) at each access

=⇒ o.age
.

= 1 −> 〈u.age = 2;〉o.age .
= u.age

Unnecessary case analyses

=⇒ o.age
.

= 1 −> 〈u.age = 2; o.age = 2;〉o.age .
= u.age

=⇒ o.age
.

= 1 −> 〈u.age = 2;〉u.age .
= 2

Updates avoid case analyses— Demo lect13/alias2.key

Delayed state computation until clear what is required

Eager simplification of updates

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 16 / 25

Aliasing

Form of Java program locations

Program variable x

Attribute access o.a

Array access ar[i]

Assignment rule for arbitrary Java locations

assign
Γ =⇒ U{l := t}〈π ω〉φ,∆
Γ =⇒ U〈πl = t; ω〉φ,∆

Updates in front of program formula (= current state) carried over

Rules for applying updates complex for reference types

Aliasing analysis causes case split: delayed using conditional terms

{o.a := t}u.a \if ({o.a := t}u .
= o) \then (t) \else ({o.a := t}u).a

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 17 / 25

Java Dynamic Logic: Method Calls

Method Call with actual parameters arg0, . . . , argn

{arg0 := t0 || · · · || argn := tn || c := tc}〈c .m(arg0, . . . , argn);〉φ

where m declared as void m(T0 p0, . . . , Tn pn)

Actions of rule methodCall

(type conformance of argi to Ti guaranteed by Java compiler)

for each formal parameter pi of m:
declare & initialize new local variable Ti p#i =argi ;

look up implementation class C of m and split proof
if implementation cannot be uniquely determined

create method invocation c.m(p#0, . . . , p#n)@C

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 18 / 25

Method Calls

Method Body Expand

1 Execute code that binds actual to formal parameters Ti p#i =argi ;

2 Call rule methodBodyExpand

Γ =⇒ 〈π method-frame(source=C, this=c){ body } ω〉φ,∆
Γ =⇒ 〈π c.m(p#0,...,p#n)@C; ω〉φ,∆

Demo
lect13/method2.key

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 19 / 25

Method Calls

Method Body Expand

1 Execute code that binds actual to formal parameters Ti p#i =argi ;

2 Call rule methodBodyExpand

Γ =⇒ 〈π method-frame(source=C, this=c){ body } ω〉φ,∆
Γ =⇒ 〈π c.m(p#0,...,p#n)@C; ω〉φ,∆

Symbolic Execution
Only static information available, proof splitting if necessary

Demo
lect13/method2.key

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 19 / 25

Method Calls

Method Body Expand

1 Execute code that binds actual to formal parameters Ti p#i =argi ;

2 Call rule methodBodyExpand

Γ =⇒ 〈π method-frame(source=C, this=c){ body } ω〉φ,∆
Γ =⇒ 〈π c.m(p#0,...,p#n)@C; ω〉φ,∆

Symbolic Execution
Runtime infrastructure required in calculus

Demo
lect13/method2.key

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 19 / 25

Method Calls

Method Body Expand

1 Execute code that binds actual to formal parameters Ti p#i =argi ;

2 Call rule methodBodyExpand

Γ =⇒ 〈π method-frame(source=C, this=c){ body } ω〉φ,∆
Γ =⇒ 〈π c.m(p#0,...,p#n)@C; ω〉φ,∆

Symbolic Execution
Runtime infrastructure required in calculus

Demo
lect13/method2.key

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 19 / 25

A Tour of Java Features in DL

Localisation of Fields and Method Implementation

Java has complex rules for localisation of
attributes and method implementations

Polymorphism

Late binding

Scoping (class vs. instance)

Context (static vs. runtime)

Visibility (private, protected, public)

Use information from semantic analysis of compiler framework
Proof split into cases when implementation not statically determined

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 20 / 25

A Round Tour of Java Features in DL

Null pointer exceptions

There are no “exceptions” in FOL: I total on FSym

Need to model possibility that o
.

= null in o.a

KeY creates PO for ! o
.

= null upon each field access

Can be switched off with option nullPointerPolicy

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 21 / 25

A Round Tour of Java Features in DL

Object initialization

Java has complex rules for object initialization

Chain of constructor calls until Object

Implicit calls to super()

Visbility issues

Initialization sequence

Coding of initialization rules in methods <createObject>(), <init>(),. . .
which are then symbolically executed

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 22 / 25

A Round Tour of Java Features in DL

Formal specification of Java API

How to perform symbolic execution when Java API method is called?

1 API method has reference implementation in Java
Call method and execute symbolically

Problem Reference implementation not always available
Problem Too expensive

2 Use JML contract of API method:
1 Show that requires clause is satisfied
2 Obtain postcondition from ensures clause
3 Delete updates with modifiable locations from symbolic state

Java Card API in JML or DL

DL version available in KeY, JML work in progress See W. Mostowski

www.cs.ru.nl/~woj/software/software.html

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 23 / 25

www.cs.ru.nl/~woj/software/software.html

A Round Tour of Java Features in DL

Formal specification of Java API

How to perform symbolic execution when Java API method is called?

1 API method has reference implementation in Java
Call method and execute symbolically

Problem Reference implementation not always available
Problem Too expensive

2 Use JML contract of API method:
1 Show that requires clause is satisfied
2 Obtain postcondition from ensures clause
3 Delete updates with modifiable locations from symbolic state

Java Card API in JML or DL

DL version available in KeY, JML work in progress See W. Mostowski

www.cs.ru.nl/~woj/software/software.html

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 23 / 25

www.cs.ru.nl/~woj/software/software.html

Outline

1 Java DL
Java Type Hierarchy
Modeling OO Programs
Self
Object Creation

2 Quantified Updates
3 Round Tour

Java Programs
Arrays
Side Effects
Abrupt Termination
Aliasing
Method Calls
Null Pointers
Initialization
API
API

4 Summary
5 Literature

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 23 / 25

Summary

Most Java features covered in KeY

Several of remaining features available in experimental version

Simplified multi-threaded JMM
Floats

Degree of automation for loop-free programs is high

Proving loops requires user to provide invariant

Automatic invariant generation sometimes possible

Symbolic execution paradigm lets you use KeY
w/o understanding details of logic

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 24 / 25

Outline

1 Java DL
Java Type Hierarchy
Modeling OO Programs
Self
Object Creation

2 Quantified Updates
3 Round Tour

Java Programs
Arrays
Side Effects
Abrupt Termination
Aliasing
Method Calls
Null Pointers
Initialization
API
API

4 Summary
5 Literature

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 24 / 25

Literature for this Lecture

Essential

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic, Sections 3.6.1, 3.6.2,
3.6.5, 3.6.7

Recommended

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic, Section 3.9

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 25 / 25

	Java DL
	Java Type Hierarchy
	Modeling OO Programs
	Self
	Object Creation

	Quantified Updates
	Round Tour
	Java Programs
	Arrays
	Side Effects
	Abrupt Termination
	Aliasing
	Method Calls
	Null Pointers
	Initialization
	API
	API

	Summary
	Literature

