André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

}

throw new NoSuchElementException();



@ DL Syntax

@ State Dependence

@ Signature

@ Terms

@ Atomic Programs

@ DL Programs

@ Program Formulas
© DL Semantics

@ States

@ Kripke Structures

@ Program Formula Valuation

@ Program Correctness
© Operational Semantics
@ Symbolic Execution

o Updates

@ Parallel Updates

@ Restrictions

T  —



© DL Syntax
@ State Dependence
@ Signature
@ Terms
@ Atomic Programs
@ DL Programs
@ Program Formulas




First-order

Propositional

Temporal
Logic




First-order

Propositional +state change +functions . Dynamic

Logic

Temporal
Logic



First-order

+state change +functions

Dynamic
“' -'. 4 L .
. * ogic

Propositional

*



Dynamic
Logic

Propositional




Propositional




Closed FOL formula either evaluates to true or false in a model M
Consider model M = (D, d,Z) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x



Closed FOL formula either evaluates to true or false in a model M
Consider model M = (D, d,Z) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x

Example

Executing x=3; results in M such that M = x =3
Executing x=4; results in M such that M }=x =3




Closed FOL formula either evaluates to true or false in a model M
Consider model M = (D, d,Z) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x

Example

Executing x=3; results in M such that M = x =3
Executing x=4; results in M such that M }=x =3

Need a logic to capture state before/after program execution J




Signature of program logic defined as in FOL, but:
In addition there are program variables, attributes, etc.

@ Rigid symbols have same interpretation in all program states

o First-order variables (logical variables for quantification)
Used to hold initial values of program variables

e Built-in functions and predicates such as 0,1, ...,+,%,...,<

e Sy el

@ Flexible (or non-rigid) symbols where interpretation depends on state
Capture side effects on state during program execution

e Functions modeling program variables and attributes are flexible

Any term containing at least one flexible symbol is also flexible J




First-order signature ¥ = (PSym,, FSym,, FSym,,,, a)

Rigid predicate symbols ~ PSym = {>, >=,...}
Rigid function symbols FSym = {+, —, %, 0, 1,...,true, false}
Flexible function symbols FSym = {i, j, k,...,p,q,r,...}

T = {1, int, boolean, T} with int, boolean incomparable

Standard typing: boolean true; <(int,int);, etc.




Typed logical variables (rigid), declared as T x; I

Program Variables Flexible constants int i; boolean p used as program
variables




@ First-order terms defined as in FOL
@ First-order terms may contain rigid and flexible symbols
e FSym,NFSym, =0

Example
Signature for FSym,,: int j; boolean p
Variables int x; boolean b;
@ j and j+ x are flexible terms of type int
@ p is a flexible term of type boolean

@ x + x is a rigid term of type int

@ j+ b and j + p are not well-typed




The atomic programs [y are assignments of the form j =t where:
@ T j; is a program variable (flexible constant)

@ t is a first-order term of type T without logical variables

Example

Signature for FSym,,,: int j; boolean p

Variables int x; boolean b;
@ j=j+1, j=0 and p=false are assignments
@ j=j+x contains a logical variable on the right
@ x=1 contains a logical variable on the left

@ j=j is equality, not assignment

@ p=0 is ill-typed




Inductive definition of the set of (DL) programs I1:
o If 7 is an atomic program, then 7; is a program
@ If p and q are programs, then pq is a program
@ If b is a variable-free term of type boolean, p and q programs, then
if (b) p else q; if (b) p;
are programs
@ If b is a variable-free term of type boolean, p a program, then

while (b) p;

is a program




Inductive definition of the set of (DL) programs I1:
o If 7 is an atomic program, then 7; is a program
@ If p and q are programs, then pq is a program
@ If b is a variable-free term of type boolean, p and q programs, then
if (b) p else q; if (b) p;
are programs
@ If b is a variable-free term of type boolean, p a program, then

while (b) p;

is a program

Programs contain no logical variables! J




Example (Admissible Program)

Signature for FSym,,: int r; int i; int n;
Signature for FSym,: int 0; int +(int,int); int -(int,int);
Signature for PSym,: <(int,int) ;

i=0;

r=0;

while (i<n) {
i=i+1;
r=r+i;

g

r=r+r-n;




Example (Admissible Program)

Signature for FSym,,: int r; int i; int n;
Signature for FSym,: int 0; int +(int,int); int -(int,int);
Signature for PSym,: <(int,int) ;

i=0;

r=0;

while (i<n) {
i=i+1;
r=r+i;

g

r=r+r-n;

Which value does the program compute in r? J




@ Each FOL formula is a DL formula
@ If p is a program and ¢ a DL formula then (p)¢ is a DL formula

@ If p is a program and ¢ a DL formula then [p]¢ is a DL formula

@ DL formulas closed under FOL quantifiers and connectives




Each FOL formula is a DL formula
If p is a program and ¢ a DL formula then (p)¢ is a DL formula

If p is a program and ¢ a DL formula then [p]¢ is a DL formula

DL formulas closed under FOL quantifiers and connectives

Program variables are flexible constants: never bound in quantifiers
Program variables need not be declared or initialized in program
Programs contain no logical variables

Modalities can be arbitrarily nested



Example (Well-formed? If yes, under which signature?)
o Vint y; (({x = 15)x=y) <> ((x = 1x1;)x=y))




Example (Well-formed? If yes, under which signature?)
o Vint y; (((x = 15)x=y) <> ((x = 1¥x1;)x=y))
Well-formed if FSym,,, contains int x;




Example (Well-formed? If yes, under which signature?)
o Vint y; (((x = 15)x=y) <> ((x = 1¥x1;)x=y))
Well-formed if FSym,,, contains int x;
e Jint x; [x = 1;](x=1)




Example (Well-formed? If yes, under which signature?)
o Vint y; (((x = 15)x=y) <> ((x = 1¥x1;)x=y))
Well-formed if FSym,,, contains int x;
e Jint x; [x = 1;](x=1)

Not well-formed, because logical variable occurs in program




Example (Well-formed? If yes, under which signature?)
o Vint y; (((x = 15)x=y) <> ({x = 1*x15)x =y))
Well-formed if FSym,,, contains int x;
e Jint x; [x = 1;](x=1)
Not well-formed, because logical variable occurs in program
o (x = 1;)([while (true) {};]false)




Example (Well-formed? If yes, under which signature?)
o Vint y; (((x = 15)x=y) <> ({x = 1*x15)x =y))
Well-formed if FSym,,, contains int x;
e Jint x; [x = 1;](x=1)
Not well-formed, because logical variable occurs in program
o (x = 1;)([while (true) {};]false)

Well-formed if FSym,, contains int x;
program formulas can be nested




© DL Semantics
@ States
@ Kripke Structures
@ Program Formula Valuation
@ Program Correctness

e IB.610M/O7; Data, Code, Deciiors



First-order model can be considered as program state

@ Interpretation of flexible symbols can change from state to state
(program variables, attribute values)
@ Interpretation of rigid symbols is the same in all states

(built-in functions and predicates)

From now, consider program state as first-order model M = (D, §,7)

@ Only interpretation Z of flexible symbols in FSym,, can change
= only track values of f € FSym,,: use s (for state) instead of M

@ Set of all states s is S




Kripke structure or Labelled transition system K = (S, p)

e State (=first-order model) s = (D,4,Z) € S
@ Transition relation p: M — (S — 5)
e p is the operational semantics of programs Il

e Each program p € I1 transforms a start state s into end state p(p)(s)

p(p)(s) can be undefined: p does not terminate when started in s

Our programs are deterministic (unlike PROMELA):
p(p) is a (partial) function (at most one value)




Example (Kripke Structure)

Two programs p and q
Show p(p) and p(q), states S = {s1,...,ss}

When p is started in ss it terminates in s4, etc.

In general, 1 and S are infinite! J




o 5,8 (p)¢ iff p(p)(s), 8 ¢ and p(p)(s) is defined
p terminates and ¢ is true in the final state after execution
e s,0EI[ple iff p(p)(s),B | ¢ whenever p(p)(s) is defined

If p terminates then ¢ is true in the final state after execution




Example (Semantic Evaluation of Program Formulas)

Signature FSym,,,: boolean a; boolean b;
Notation: Z(x) = T iff x appears in node

Question 1: s; = (p)(a = true) ?




Example (Semantic Evaluation of Program Formulas)

Signature FSym,,,: boolean a; boolean b;
Notation: Z(x) = T iff x appears in node

Question 2: s; = (q)(a = true) ?




Example (Semantic Evaluation of Program Formulas)

Signature FSym,,,: boolean a; boolean b;
Notation: Z(x) = T iff x appears in node

Question 3: s5 = (q)(a = true) ?




Example (Semantic Evaluation of Program Formulas)

Signature FSym,,,: boolean a; boolean b;
Notation: Z(x) = T iff x appears in node

Question 4: s5 = [q](a = true) ?




e If s, 8 = (p)¢ then

p totally correct (with respect to ¢) in s, 3

e If 5,5 = [p]¢ then

p partially correct (with respect to ¢) in s, 3

e Duality (p)¢ iff ![p]!¢
Exercise: justify this using the semantics

@ Implication if (p)¢ then [p]¢
Total correctness implies partial correctness

e converse is false
e holds only for deterministic programs!



F={¢1,...,0n} and A = {t1,...,9¥m} sets of program formulas
where all logical variables occur bound

Recall sE(T=A) iff sE(p1& - &¢,) = (1| | ¥m)

Define semantics of DL sequents like semantics of FOL sequents

A sequent ' =- A over program formulas is valid iff

s (= A) in all states s




F={¢1,...,0n} and A = {t1,...,9¥m} sets of program formulas
where all logical variables occur bound

Recall sE(T=A) iff sE(p1& - &¢,) = (1| | ¥m)

Define semantics of DL sequents like semantics of FOL sequents

A sequent ' =- A over program formulas is valid iff

s (= A) in all states s

Initial value of program variables implicitly “universally quantified”




KeY prover ‘“starts” programs in initial states according to JAvA
convention:

@ Values of array entries initialized to default values: int[] to 0, etc.
@ Static object initialization

@ No objects created

How to restrict validity to set of initial states So C S ? J

© Design closed FOL formula Init with
s &= Init iff ses

© Use sequent I Init = A

Later: simple method for specifying initial value of program variables



© Operational Semantics

e I5.610M/O7; Data, Code, Decisiors



In labelled transition system K = (S, p):
p:MN— (S — S) is operational semantics of programs p € I

How is p defined for concrete programs and states? J




In labelled transition system K = (S, p):
p: M — (S —S) is operational semantics of programs p € Il

How is p defined for concrete programs and states? J

Example (Operational semantics of assignment)
State s interprets flexible symbols f with Zs(f)

p(x=t)(s) = s’ where s’ identical to s except Zy(x) = vals(t)

Very tedious task to define p for JAVA ...
= here we go directly to calculus for program formulas!




@ Symbolic Execution
@ Updates
@ Parallel Updates
@ Restrictions

e I5.610M/O7; Data, Code, Deciiors



Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential program p; q; ¢ 7

@ Follow the natural control flow when analyzing a program

@ Values of some variables unknown: symbolic state representation




Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential program p; q; ¢ 7

@ Follow the natural control flow when analyzing a program

@ Values of some variables unknown: symbolic state representation

Example
Compute the final state after termination of

int x; int y; x=x+y; y=x-y; X=x-7y;




(stmt; rest)o, [stmt; rest]o

@ Rules must symbolically execute first statement

@ Repeated application of rules in a proof corresponds to
symbolic program execution



{x/%01d}T, x = {x/%014}t = (rest)d, {x/xoid}A
= (x = t; rest)p,A

assign

Xold New program variable that “rescues” old value of x




{x/%01d}T, x = {x/%014}t = (rest)d, {x/xoid}A

assign
& = (x = t; rest)p,A

Xold New program variable that “rescues” old value of x

Example
Conclusion matching: {x/x}, {t/x+y}, {rest/y=x-y; x=x-y;},
{o/(x=y0 &y =x0)} {T/x=x0, y =y}, {A/0}
Xold = X0, ¥ = Y0, X = Xolg+y = (y=x-y; x=x-y;)(x = yo & y = x0)
X = X0, Y = Yo = (x=x+y; y=x-y; x=x-y;)(x =y0 &y = x0)




If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
In DL Pre — [p]Post (Pre, Post any DL formula)




If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
In DL Pre — [p]Post (Pre, Post any DL formula)

Example (In KeY Syntax, automatic proof)

\programVariables {
int x; int y; }
\problem {
(\forall int x0; \forall int y0; ((x=x0 & y=y0) ->
\<H{x=x+y; y=x-y; x=x-y;}\>(x=y0 & y=x0)))

lectll/swap.key (Demo)




Example
VT y; ((px=y) <> ((@x=y))




Example
VT y; ((px=y) <> ((@x=y))
Not valid in general

Programs p behave q equivalently on variable T x




Example

VT y; (Px=y) <> ((@x=y))

Not valid in general

Programs p behave q equivalently on variable T x

Example
ATy, (x=y — (p)true)




Example
VT y; ((px=y) <> ((@x=y))
Not valid in general

Programs p behave q equivalently on variable T x

Example
AT y; (x=y — (p)true)
Not valid in general

Program p terminates in all states where x has suitable initial value




b= true = (p; rest)¢p, A b= false = (q; rest)p, A

if
| F— (if 0 {p?telse { q}; rest)p,A

Symbolic execution must consider all possible execution branches J




b= true = (p; rest)¢p, A b= false = (q; rest)p, A

if
| F— (if 0 {p?telse { q}; rest)p,A

Symbolic execution must consider all possible execution branches J

= (if (b) { p; while (b) p}; r)p, A

unwindLoop

I = (while (b) {p}; r)¢,A




How to express correctness for any initial value of program variable? J




How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)



How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Not intended: = (...i...)¢ (Validity of sequents:
quantification over all states)



How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Not intended: = (...i...)¢ (Validity of sequents:
quantification over all states)

As previous: VT i (=1 — (...i...)¢)



How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Not intended: = (...i...)¢ (Validity of sequents:
quantification over all states)

As previous: VT i (=1 — (...i...)¢)

Use explicit construct to record values in current state

Update VT io; ({i:=io}(...1...)9)




Updates specify computation state where formula is evaluated J

If v is program variable, t FOL term type-compatible with v,
t' any FOL term, and ¢ any DL formula, then

o {v:=t}t'is DL term
e {v:=t}¢is DL formula

State s interprets flexible symbols f with Zs(f)
[ variable assignment for logical variables in t

p({v := t})(s) = s’ where s’ identical to s except Zy/(x) = vals g(t)




@ Update semantics identical to assignment

@ Value of update depends on logical variables in t: use 0
@ Updates as “lazy” assignments (no term substitution done)

@ Updates are not assignments: right-hand side is FOL term
{x := n}¢ cannot be turned into assignment (n logical variable)

(x=i++; )¢ cannot directly be turned into update

@ Updates are not equations: change value of flexible terms




program variable b=ty ~ where x 7 y
{x=t}x ~ t

logical variable {x :=t}w ~~ w
complex term {x :=t}f(t1,...,tn) ~ F({x:=t}t1,...,{x = t}t,)

{ x=t}(6 & ¥) ~ {x:=1}¢ & {x:=t}¢
FOL formula

x=tFTy o)~ VT y ({x:=t}9)
program formula {x := t}((p)¢) ~ {x:=t}({p)®) unchanged!

Update computation delayed until p symbolically executed J




= {x:=t}(rest)¢, A

assign r— <X = t; reSt>¢7A

@ Avoids renaming of program variables

@ Works as long as t has no side effects (ok in simple DL)

Demo
Examples/lect11/swap.key



Example

\programVariables {
int x;
}
\problem {
(\exists int y;
({x := y*\<{while (x > 0) {x = x-1;3}}\> x=0 ))
}

Intuitive Meaning? Satisfiable? Valid?

Demo
Examples/lectll/term.key



Example

\programVariables {
int x;
}
\problem {
(\exists int y;
({x := y¥\<{while (x > 0) {x = x-1;3}}\> x=0 ))
}

Intuitive Meaning? Satisfiable? Valid?

Demo
Examples/lectll/term.key

What to do when we cannot determine a concrete loop bound? J




How to apply updates on updates? J

Example
Symbolic execution of

int x; int y; x=x+y; y=x-y; X=x-y;

yields:
{x = x+tyHy := x-yHx := x-y}

Need to compose three sequential state changes into a single one!




A parallel update is expression of the form {/ := vi||---||/n := vn} where
each {/; .= v;} is simple update

@ All v; computed in old state before update is applied
@ Updates of all locations /; executed simultaneously

@ Upon conflict  fj=1;, v # v; later update (max{/, }) wins




A parallel update is expression of the form {/ := vi||---||/n := vn} where
each {/; .= v;} is simple update
@ All v; computed in old state before update is applied

@ Updates of all locations /; executed simultaneously

@ Upon conflict  fj=1;, v # v; later update (max{/, }) wins

{/1 = rl}{/2 = r2} = {/1 = r1H/2 = {/1 = rl}rg}

. . x ifxg{h,... I}
{Il = V1||||In = Vn}X = { - ifX:Ik’Xg{lk_i_l,,,_?In}




Example
{x := x+tyHy := z-yP{x = x-y} =
{x :=x+y || y := (x+y)-yHx := x-y} =
{x i=x+ty || y := (x+y)-y || x := (x+y)-((x+y)-y)} =
{xi=xty |l y:=x || x :=y} =
{y :=x Il x :=y}
KeY automatically deletes overwritten (unnecessary) updates

Demo
Examples/lectl11/swap.key



Example
{x := x+tyHy := z-yP{x = x-y} =
{x :=x+y || y := (x+y)-yHx := x-y} =
{x i=x+ty || y := (x+y)-y || x := (x+y)-((x+y)-y)} =
{xi=xty |l y:=x || x :=y} =
{y :=x Il x :=y}
KeY automatically deletes overwritten (unnecessary) updates

Demo
Examples/lectl11/swap.key

Parallel updates to store intermediate state of symbolic computation J




= [x/t¢, 3T x ¢, A MVTx ¢ [x/te=A
J—right V—left
[=3Tx; ¢, A FYTx ¢= A

Me=t[t/t|y=[t/t]|o,A
Nt=t,y = ¢ A

applyEq

t, t’ must be rigid, because all occurrences must have the same value

Example
Ni=0—> (i+H)i=0= A
VTx; (x=0—= (i++)x =0) = A

Logically valid formula would result in unsatisfiable antecedent!
KeY prohibits unsound substitutions







KeY Book Verification of Object-Oriented Software, Chapter 10: Using
KeY

KeY Book Verification of Object-Oriented Software, Chapter 3: Dynamic
Logic (Sections 3.1, 3.2, 3.4, 3.5, 3.6.1, 3.6.3, 3.6.4)




	DL Syntax
	State Dependence
	Signature
	Terms
	Atomic Programs
	DL Programs
	Program Formulas

	DL Semantics
	States
	Kripke Structures
	Program Formula Valuation
	Program Correctness

	Operational Semantics
	Symbolic Execution
	Updates
	Parallel Updates
	Restrictions

	Literature

