André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

}

throw new NoSuchElementException();



@ DL Syntax

@ State Dependence

@ Signature

@ Terms

@ Atomic Programs

@ DL Programs

@ Program Formulas
© DL Semantics

@ States

@ Kripke Structures

@ Program Formula Valuation

@ Program Correctness
© Operational Semantics
@ Symbolic Execution

o Updates

@ Parallel Updates

@ Restrictions

T  —



© DL Syntax
@ State Dependence
@ Signature
@ Terms
@ Atomic Programs
@ DL Programs
@ Program Formulas




First-order

Propositional

Temporal
Logic




First-order

Propositional +state change +functions . Dynamic

Logic

Temporal
Logic



First-order

+state change +functions

Dynamic
“' -'. 4 L .
. * ogic

Propositional

*



Dynamic
Logic

Propositional




Propositional




Closed FOL formula either evaluates to true or false in a model M
Consider model M = (D, d,Z) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x



Closed FOL formula either evaluates to true or false in a model M
Consider model M = (D, d,Z) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x

Example

Executing x=3; results in M such that M = x =3
Executing x=4; results in M such that M }=x =3




Closed FOL formula either evaluates to true or false in a model M
Consider model M = (D, d,Z) as program state

Let x be (local) program variable or attribute
Execution of program p may change program state, i.e., value of x

Example

Executing x=3; results in M such that M = x =3
Executing x=4; results in M such that M }=x =3

Need a logic to capture state before/after program execution J




Signature of program logic defined as in FOL, but:
In addition there are program variables, attributes, etc.

@ Rigid symbols have same interpretation in all program states

o First-order variables (logical variables for quantification)
Used to hold initial values of program variables

e Built-in functions and predicates such as 0,1, ...,+,%,...,<

e Sy el

@ Flexible (or non-rigid) symbols where interpretation depends on state
Capture side effects on state during program execution

e Functions modeling program variables and attributes are flexible

Any term containing at least one flexible symbol is also flexible J




First-order signature ¥ = (PSym,, FSym,, FSym,,,, a)

Rigid predicate symbols ~ PSym = {>, >=,...}
Rigid function symbols FSym = {+, —, %, 0, 1,...,true, false}
Flexible function symbols FSym = {i, j, k,...,p,q,r,...}

T = {1, int, boolean, T} with int, boolean incomparable

Standard typing: boolean true; <(int,int);, etc.




Typed logical variables (rigid), declared as T x; I

Program Variables Flexible constants int i; boolean p used as program
variables




@ First-order terms defined as in FOL
@ First-order terms may contain rigid and flexible symbols
e FSym,NFSym, =0

Example
Signature for FSym,,: int j; boolean p
Variables int x; boolean b;
@ j and j+ x are flexible terms of type int
@ p is a flexible term of type boolean

@ x + x is a rigid term of type int

@ j+ b and j + p are not well-typed




The atomic programs [y are assignments of the form j =t where:
@ T j; is a program variable (flexible constant)

@ t is a first-order term of type T without logical variables

Example

Signature for FSym,,,: int j; boolean p

Variables int x; boolean b;
@ j=j+1, j=0 and p=false are assignments
@ j=j+x contains a logical variable on the right
@ x=1 contains a logical variable on the left

@ j=j is equality, not assignment

@ p=0 is ill-typed




Inductive definition of the set of (DL) programs I1:
o If 7 is an atomic program, then 7; is a program
@ If p and q are programs, then pq is a program
@ If b is a variable-free term of type boolean, p and q programs, then
if (b) p else q; if (b) p;
are programs
@ If b is a variable-free term of type boolean, p a program, then

while (b) p;

is a program




Inductive definition of the set of (DL) programs I1:
o If 7 is an atomic program, then 7; is a program
@ If p and q are programs, then pq is a program
@ If b is a variable-free term of type boolean, p and q programs, then
if (b) p else q; if (b) p;
are programs
@ If b is a variable-free term of type boolean, p a program, then

while (b) p;

is a program

Programs contain no logical variables! J




Example (Admissible Program)

Signature for FSym,,: int r; int i; int n;
Signature for FSym,: int 0; int +(int,int); int -(int,int);
Signature for PSym,: <(int,int) ;

i=0;

r=0;

while (i<n) {
i=i+1;
r=r+i;

g

r=r+r-n;




Example (Admissible Program)

Signature for FSym,,: int r; int i; int n;
Signature for FSym,: int 0; int +(int,int); int -(int,int);
Signature for PSym,: <(int,int) ;

i=0;

r=0;

while (i<n) {
i=i+1;
r=r+i;

g

r=r+r-n;

Which value does the program compute in r? J




@ Each FOL formula is a DL formula
@ If p is a program and ¢ a DL formula then (p)¢ is a DL formula

@ If p is a program and ¢ a DL formula then [p]¢ is a DL formula

@ DL formulas closed under FOL quantifiers and connectives




Each FOL formula is a DL formula
If p is a program and ¢ a DL formula then (p)¢ is a DL formula

If p is a program and ¢ a DL formula then [p]¢ is a DL formula

DL formulas closed under FOL quantifiers and connectives

Program variables are flexible constants: never bound in quantifiers
Program variables need not be declared or initialized in program
Programs contain no logical variables

Modalities can be arbitrarily nested



Example (Well-formed? If yes, under which signature?)
o Vint y; (({x = 15)x=y) <> ((x = 1x1;)x=y))
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Well-formed if FSym,,, contains int x;




Example (Well-formed? If yes, under which signature?)
o Vint y; (((x = 15)x=y) <> ((x = 1¥x1;)x=y))
Well-formed if FSym,,, contains int x;
e Jint x; [x = 1;](x=1)




Example (Well-formed? If yes, under which signature?)
o Vint y; (((x = 15)x=y) <> ((x = 1¥x1;)x=y))
Well-formed if FSym,,, contains int x;
e Jint x; [x = 1;](x=1)

Not well-formed, because logical variable occurs in program




Example (Well-formed? If yes, under which signature?)
o Vint y; (((x = 15)x=y) <> ({x = 1*x15)x =y))
Well-formed if FSym,,, contains int x;
e Jint x; [x = 1;](x=1)
Not well-formed, because logical variable occurs in program
o (x = 1;)([while (true) {};]false)




Example (Well-formed? If yes, under which signature?)
o Vint y; (((x = 15)x=y) <> ({x = 1*x15)x =y))
Well-formed if FSym,,, contains int x;
e Jint x; [x = 1;](x=1)
Not well-formed, because logical variable occurs in program
o (x = 1;)([while (true) {};]false)

Well-formed if FSym,, contains int x;
program formulas can be nested




© DL Semantics
@ States
@ Kripke Structures
@ Program Formula Valuation
@ Program Correctness

e IB.610M/O7; Data, Code, Deciiors



First-order model can be considered as program state

@ Interpretation of flexible symbols can change from state to state
(program variables, attribute values)
@ Interpretation of rigid symbols is the same in all states

(built-in functions and predicates)

From now, consider program state as first-order model M = (D, §,7)

@ Only interpretation Z of flexible symbols in FSym,, can change
= only track values of f € FSym,,: use s (for state) instead of M

@ Set of all states s is S




Kripke structure or Labelled transition system K = (S, p)

e State (=first-order model) s = (D,4,Z) € S
@ Transition relation p: M — (S — 5)
e p is the operational semantics of programs Il

e Each program p € I1 transforms a start state s into end state p(p)(s)

p(p)(s) can be undefined: p does not terminate when started in s

Our programs are deterministic (unlike PROMELA):
p(p) is a (partial) function (at most one value)




Example (Kripke Structure)

Two programs p and q
Show p(p) and p(q), states S = {s1,...,ss}

When p is started in ss it terminates in s4, etc.

In general, 1 and S are infinite! J




o 5,8 (p)¢ iff p(p)(s), 8 ¢ and p(p)(s) is defined
p terminates and ¢ is true in the final state after execution
e s,0EI[ple iff p(p)(s),B | ¢ whenever p(p)(s) is defined

If p terminates then ¢ is true in the final state after execution




Example (Semantic Evaluation of Program Formulas)

Signature FSym,,,: boolean a; boolean b;
Notation: Z(x) = T iff x appears in node

Question 1: s; = (p)(a = true) ?




Example (Semantic Evaluation of Program Formulas)

Signature FSym,,,: boolean a; boolean b;
Notation: Z(x) = T iff x appears in node

Question 2: s; = (q)(a = true) ?




Example (Semantic Evaluation of Program Formulas)

Signature FSym,,,: boolean a; boolean b;
Notation: Z(x) = T iff x appears in node

Question 3: s5 = (q)(a = true) ?




Example (Semantic Evaluation of Program Formulas)

Signature FSym,,,: boolean a; boolean b;
Notation: Z(x) = T iff x appears in node

Question 4: s5 = [q](a = true) ?




e If s, 8 = (p)¢ then

p totally correct (with respect to ¢) in s, 3

e If 5,5 = [p]¢ then

p partially correct (with respect to ¢) in s, 3

e Duality (p)¢ iff ![p]!¢
Exercise: justify this using the semantics

@ Implication if (p)¢ then [p]¢
Total correctness implies partial correctness

e converse is false
e holds only for deterministic programs!



F={¢1,...,0n} and A = {t1,...,9¥m} sets of program formulas
where all logical variables occur bound

Recall sE(T=A) iff sE(p1& - &¢,) = (1| | ¥m)

Define semantics of DL sequents like semantics of FOL sequents

A sequent ' =- A over program formulas is valid iff

s (= A) in all states s




F={¢1,...,0n} and A = {t1,...,9¥m} sets of program formulas
where all logical variables occur bound

Recall sE(T=A) iff sE(p1& - &¢,) = (1| | ¥m)

Define semantics of DL sequents like semantics of FOL sequents

A sequent ' =- A over program formulas is valid iff

s (= A) in all states s

Initial value of program variables implicitly “universally quantified”




KeY prover ‘“starts” programs in initial states according to JAvA
convention:

@ Values of array entries initialized to default values: int[] to 0, etc.
@ Static object initialization

@ No objects created

How to restrict validity to set of initial states So C S ? J

© Design closed FOL formula Init with
s &= Init iff ses

© Use sequent I Init = A

Later: simple method for specifying initial value of program variables



© Operational Semantics

e I5.610M/O7; Data, Code, Decisiors



In labelled transition system K = (S, p):
p:MN— (S — S) is operational semantics of programs p € I

How is p defined for concrete programs and states? J




In labelled transition system K = (S, p):
p: M — (S —S) is operational semantics of programs p € Il

How is p defined for concrete programs and states? J

Example (Operational semantics of assignment)
State s interprets flexible symbols f with Zs(f)

p(x=t)(s) = s’ where s’ identical to s except Zy(x) = vals(t)

Very tedious task to define p for JAVA ...
= here we go directly to calculus for program formulas!




@ Symbolic Execution
@ Updates
@ Parallel Updates
@ Restrictions

e I5.610M/O7; Data, Code, Deciiors



Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential program p; q; ¢ 7

@ Follow the natural control flow when analyzing a program

@ Values of some variables unknown: symbolic state representation




Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential program p; q; ¢ 7

@ Follow the natural control flow when analyzing a program

@ Values of some variables unknown: symbolic state representation

Example
Compute the final state after termination of

int x; int y; x=x+y; y=x-y; X=x-7y;




(stmt; rest)o, [stmt; rest]o

@ Rules must symbolically execute first statement

@ Repeated application of rules in a proof corresponds to
symbolic program execution



{x/%01d}T, x = {x/%014}t = (rest)d, {x/xoid}A
= (x = t; rest)p,A

assign

Xold New program variable that “rescues” old value of x




{x/%01d}T, x = {x/%014}t = (rest)d, {x/xoid}A

assign
& = (x = t; rest)p,A

Xold New program variable that “rescues” old value of x

Example
Conclusion matching: {x/x}, {t/x+y}, {rest/y=x-y; x=x-y;},
{o/(x=y0 &y =x0)} {T/x=x0, y =y}, {A/0}
Xold = X0, ¥ = Y0, X = Xolg+y = (y=x-y; x=x-y;)(x = yo & y = x0)
X = X0, Y = Yo = (x=x+y; y=x-y; x=x-y;)(x =y0 &y = x0)




If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
In DL Pre — [p]Post (Pre, Post any DL formula)




If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
In DL Pre — [p]Post (Pre, Post any DL formula)

Example (In KeY Syntax, automatic proof)

\programVariables {
int x; int y; }
\problem {
(\forall int x0; \forall int y0; ((x=x0 & y=y0) ->
\<H{x=x+y; y=x-y; x=x-y;}\>(x=y0 & y=x0)))

lectll/swap.key (Demo)




Example
VT y; ((px=y) <> ((@x=y))




Example
VT y; ((px=y) <> ((@x=y))
Not valid in general

Programs p behave q equivalently on variable T x




Example

VT y; (Px=y) <> ((@x=y))

Not valid in general

Programs p behave q equivalently on variable T x

Example
ATy, (x=y — (p)true)




Example
VT y; ((px=y) <> ((@x=y))
Not valid in general

Programs p behave q equivalently on variable T x

Example
AT y; (x=y — (p)true)
Not valid in general

Program p terminates in all states where x has suitable initial value




b= true = (p; rest)¢p, A b= false = (q; rest)p, A

if
| F— (if 0 {p?telse { q}; rest)p,A

Symbolic execution must consider all possible execution branches J




b= true = (p; rest)¢p, A b= false = (q; rest)p, A

if
| F— (if 0 {p?telse { q}; rest)p,A

Symbolic execution must consider all possible execution branches J

= (if (b) { p; while (b) p}; r)p, A

unwindLoop

I = (while (b) {p}; r)¢,A




How to express correctness for any initial value of program variable? J




How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)



How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Not intended: = (...i...)¢ (Validity of sequents:
quantification over all states)



How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Not intended: = (...i...)¢ (Validity of sequents:
quantification over all states)

As previous: VT i (=1 — (...i...)¢)



How to express correctness for any initial value of program variable? J

Not allowed: VT i (...i...)¢ (program # logical variable)

Not intended: = (...i...)¢ (Validity of sequents:
quantification over all states)

As previous: VT i (=1 — (...i...)¢)

Use explicit construct to record values in current state

Update VT io; ({i:=io}(...1...)9)




Updates specify computation state where formula is evaluated J

If v is program variable, t FOL term type-compatible with v,
t' any FOL term, and ¢ any DL formula, then

o {v:=t}t'is DL term
e {v:=t}¢is DL formula

State s interprets flexible symbols f with Zs(f)
[ variable assignment for logical variables in t

p({v := t})(s) = s’ where s’ identical to s except Zy/(x) = vals g(t)




@ Update semantics identical to assignment

@ Value of update depends on logical variables in t: use 0
@ Updates as “lazy” assignments (no term substitution done)

@ Updates are not assignments: right-hand side is FOL term
{x := n}¢ cannot be turned into assignment (n logical variable)

(x=i++; )¢ cannot directly be turned into update

@ Updates are not equations: change value of flexible terms




program variable b=ty ~ where x 7 y
{x=t}x ~ t

logical variable {x :=t}w ~~ w
complex term {x :=t}f(t1,...,tn) ~ F({x:=t}t1,...,{x = t}t,)

{ x=t}(6 & ¥) ~ {x:=1}¢ & {x:=t}¢
FOL formula

x=tFTy o)~ VT y ({x:=t}9)
program formula {x := t}((p)¢) ~ {x:=t}({p)®) unchanged!

Update computation delayed until p symbolically executed J




= {x:=t}(rest)¢, A

assign r— <X = t; reSt>¢7A

@ Avoids renaming of program variables

@ Works as long as t has no side effects (ok in simple DL)

Demo
Examples/lect11/swap.key



Example

\programVariables {
int x;
}
\problem {
(\exists int y;
({x := y*\<{while (x > 0) {x = x-1;3}}\> x=0 ))
}

Intuitive Meaning? Satisfiable? Valid?

Demo
Examples/lectll/term.key



Example

\programVariables {
int x;
}
\problem {
(\exists int y;
({x := y¥\<{while (x > 0) {x = x-1;3}}\> x=0 ))
}

Intuitive Meaning? Satisfiable? Valid?

Demo
Examples/lectll/term.key

What to do when we cannot determine a concrete loop bound? J




How to apply updates on updates? J

Example
Symbolic execution of

int x; int y; x=x+y; y=x-y; X=x-y;

yields:
{x = x+tyHy := x-yHx := x-y}

Need to compose three sequential state changes into a single one!




A parallel update is expression of the form {/ := vi||---||/n := vn} where
each {/; .= v;} is simple update

@ All v; computed in old state before update is applied
@ Updates of all locations /; executed simultaneously

@ Upon conflict  fj=1;, v # v; later update (max{/, }) wins




A parallel update is expression of the form {/ := vi||---||/n := vn} where
each {/; .= v;} is simple update
@ All v; computed in old state before update is applied

@ Updates of all locations /; executed simultaneously

@ Upon conflict  fj=1;, v # v; later update (max{/, }) wins

{/1 = rl}{/2 = r2} = {/1 = r1H/2 = {/1 = rl}rg}

. . x ifxg{h,... I}
{Il = V1||||In = Vn}X = { - ifX:Ik’Xg{lk_i_l,,,_?In}




Example
{x := x+tyHy := z-yP{x = x-y} =
{x :=x+y || y := (x+y)-yHx := x-y} =
{x i=x+ty || y := (x+y)-y || x := (x+y)-((x+y)-y)} =
{xi=xty |l y:=x || x :=y} =
{y :=x Il x :=y}
KeY automatically deletes overwritten (unnecessary) updates

Demo
Examples/lectl11/swap.key



Example
{x := x+tyHy := z-yP{x = x-y} =
{x :=x+y || y := (x+y)-yHx := x-y} =
{x i=x+ty || y := (x+y)-y || x := (x+y)-((x+y)-y)} =
{xi=xty |l y:=x || x :=y} =
{y :=x Il x :=y}
KeY automatically deletes overwritten (unnecessary) updates

Demo
Examples/lectl11/swap.key

Parallel updates to store intermediate state of symbolic computation J




= [x/t¢, 3T x ¢, A MVTx ¢ [x/te=A
J—right V—left
[=3Tx; ¢, A FYTx ¢= A

Me=t[t/t|y=[t/t]|o,A
Nt=t,y = ¢ A

applyEq

t, t’ must be rigid, because all occurrences must have the same value

Example
Ni=0—> (i+H)i=0= A
VTx; (x=0—= (i++)x =0) = A

Logically valid formula would result in unsatisfiable antecedent!
KeY prohibits unsound substitutions







KeY Book Verification of Object-Oriented Software, Chapter 10: Using
KeY

KeY Book Verification of Object-Oriented Software, Chapter 3: Dynamic
Logic (Sections 3.1, 3.2, 3.4, 3.5, 3.6.1, 3.6.3, 3.6.4)
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