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Quantifier-free fragment of first-order logic with built-in equality.

{_'7 AV, =, ﬁ/aiapi/ai}

The semantics of = is object identity.

Unlike =, the function symbols f; of arities «; are uninterpreted, i.e.,
have no special meaning or axiomatization.

x=g(y,z) = f(x) = f(g(y,2))
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Quantifier-free fragment of first-order logic with built-in equality.

{_‘7 NV, =, ﬁ/aia pi/ai}

The semantics of = is object identity.

Unlike =, the function symbols f; of arities «; are uninterpreted, i.e.,
have no special meaning or axiomatization.

Q Vx(x=x) reflexive
Q VxVy(x=y —y=x) symmetric
Q xVyVz(x=yANy=2z—x=2) transitive
Q Vxi.x,Vy1..vn (X1 =y A AXp=yn— f(x1,.., %) = f(y1, ..,y,,))
congruence

Q Vxi.x,Vy1..yn (x1 =y1AAXp = yn — (p(x1, ., xn) < p(y1, ~7Yn)))
"~ AndréPlatzer (CMU)  15-819M/04: Data, Code, Decisions . 2/10
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Example (Equality Logic with different functions and meanings)

Interpreted functions xX=yxz+x—y=0vz4+0=0
Uninterpreted functions x = a(m(y,z),x) -y =0V a(z,0) =0
No functions x=c—oy=0Vb=0




Input: formula ¢ in equality logic plus interpreted functions
Output: formula in equality logic plus uninterpreted functions

© Replace each interpreted function symbol by a new uninterpreted
function symbol
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Interpreted functions XxX=yxz+x—y=0vz4+0=0
Uninterpreted functions x = a(m(y,z),x) -y =0V a(z,0) =0




Input: formula ¢ in equality logic plus interpreted functions
Output: formula in equality logic plus uninterpreted functions
of different semantics!

© Replace each interpreted function symbol by a new uninterpreted
function symbol

Example (Forgetful projection)

Interpreted functions XxX=yxz+x—y=0vz4+0=0
Uninterpreted functions x = a(m(y,z),x) -y =0V a(z,0) =0

If the uninterpreted formula is valid, its interpreted variant is valid too,
but not vice versa.



@ Goal: remove uninterpreted functions
@ Replace uninterpreted function terms with new variables

@ Add functional consistency axioms as needed from the following
axiom scheme

X1=Y1 A Axp=Yn— f(x1,..., %) = F(y1,...,¥n)
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© Replace function terms by unique identifiers from inside out
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Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in

© Replace function terms by unique identifiers from inside out

i fi
f(ﬁ)?)):l\/’f-(/x\)#2w h=1Vf #£2 flif(x)
' f = f(£)
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© Add functional consistency axiom for every pair of arguments of f

(x=h—oh=h) = Hh=1V f#2




Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in
© Replace function terms by unique identifiers from inside out
fi f

~ N ~ = f1=f(x)
FFON) =1V F)£2~ h=1vhig2 | 1=
—_ f = f(f1)

f

© Add functional consistency axiom for every pair of arguments of f

(x=h—h=H) — HL=1V f#2

¢ valid iff ¢ valid !




Example
Input: quantifier-free ¢ in equality logic plus uninterpreted functions
x1=x = f(xa) # f(x) V f(x1) # f(x3)

@ Transform ¢ to negation normal form by pushing negations in




Example
Input: quantifier-free ¢ in equality logic plus uninterpreted functions
X1 = Xp — f(Xl) £ f(Xz) V f(Xl) =£ f(X3)
@ Transform ¢ to negation normal form by pushing negations in

@ Replace function terms by unique identifiers from inside out
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Input: quantifier-free ¢ in equality logic plus uninterpreted functions
X1 = Xp — f(Xl) £ f(Xz) V f(Xl) =£ f(X3)
@ Transform ¢ to negation normal form by pushing negations in

@ Replace function terms by unique identifiers from inside out

f1=f(X1)
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Example
Input: quantifier-free ¢ in equality logic plus uninterpreted functions
X1 = Xp — f(Xl) £ f(Xz) V f(Xl) =£ f(X3)
@ Transform ¢ to negation normal form by pushing negations in

@ Replace function terms by unique identifiers from inside out

f1=f(X1)
xx=xx—=h#HOVhHi#RH f = f(x2)
3 = f(x3)

© Add functional consistency axiom for every pair of arguments of f

(a=x—>h=h)
ANx1=x3— fL =1H)
Ao =x3 — h =f))

— (xi=x—h#hHVAH#R)




Quantifier-free fragment of first-order logic with built-in equality as only
predicate and no functions.

{_|’ /\7 \/’ :}

The semantics of = is object identity.

Example

x=c—y=0vVb=0
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@ Transform ¢ into DNF (can be optimized)
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Input: quantifier-free ¢” in equality logic w/o uninterpreted functions
Output: satisfiable / unsatisfiable

@ Transform ¢ into DNF (can be optimized)
@ Consider each disjunct F separately
© For each variable x, define equivalence class [x] := {x}
@ For each (x = y) € F, merge equivalence classes [x] and [y] by
[x] == Iy] == XUyl
© For each (x # y) € F, if x € [y] then F unsat; consider next disjunct
Q return sat

Much more efficient algorithms exist even with UF J
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Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
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[a] ={a,b,c} [d] ={d, e} a # ¢ unsat
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