15-819M: Data, Code, Decisions

04: Equality Logic and Uninterpreted Functions

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA

Outline

- Quantifier-free Equality Logic
 - EUF QF Equality Logic with Uninterpreted Functions
 - QF Equality Logic without Functions

Outline

- Quantifier-free Equality Logic
 - EUF QF Equality Logic with Uninterpreted Functions
 - QF Equality Logic without Functions

Definition (Quantifier-free Equality Logic)

Quantifier-free fragment of first-order logic with built-in equality.

$$\{\neg, \wedge, \vee, =, f_i/\alpha_i, p_i/\alpha_i\}$$

The semantics of = is object identity.

Unlike =, the function symbols f_i of arities α_i are uninterpreted, i.e., have no special meaning or axiomatization.

$$x = g(y, z) \rightarrow f(x) = f(g(y, z))$$

Definition (Quantifier-free Equality Logic)

Quantifier-free fragment of first-order logic with built-in equality.

$$\{\neg, \wedge, \vee, =, f_i/\alpha_i, p_i/\alpha_i\}$$

The semantics of = is object identity.

Unlike =, the function symbols f_i of arities α_i are uninterpreted, i.e., have no special meaning or axiomatization.

$$f(f(f(a))) = a \wedge f(f(f(f(f(a))))) = a \rightarrow f(a) = a$$

Definition (Quantifier-free Equality Logic)

Quantifier-free fragment of first-order logic with built-in equality.

$$\{\neg, \land, \lor, =, f_i/\alpha_i, p_i/\alpha_i\}$$

The semantics of = is object identity.

Unlike =, the function symbols f_i of arities α_i are uninterpreted, i.e., have no special meaning or axiomatization.

reflexive

Definition (Quantifier-free Equality Logic)

Quantifier-free fragment of first-order logic with built-in equality.

$$\{\neg, \land, \lor, =, f_i/\alpha_i, p_i/\alpha_i\}$$

The semantics of = is object identity.

Unlike =, the function symbols f_i of arities α_i are uninterpreted, i.e., have no special meaning or axiomatization.

reflexive

symmetric

Definition (Quantifier-free Equality Logic)

Quantifier-free fragment of first-order logic with built-in equality.

$$\{\neg, \land, \lor, =, f_i/\alpha_i, p_i/\alpha_i\}$$

The semantics of = is object identity.

Unlike =, the function symbols f_i of arities α_i are uninterpreted, i.e., have no special meaning or axiomatization.

reflexive

symmetric

transitive

Definition (Quantifier-free Equality Logic)

Quantifier-free fragment of first-order logic with built-in equality.

$$\{\neg, \wedge, \vee, =, f_i/\alpha_i, p_i/\alpha_i\}$$

The semantics of = is object identity.

Unlike =, the function symbols f_i of arities α_i are uninterpreted, i.e., have no special meaning or axiomatization.

reflexive

symmetric

- transitive
- $∀x_1..x_n ∀y_1..y_n (x_1 = y_1 ∧ ... ∧ x_n = y_n → f(x_1,...,x_n) = f(y_1,...,y_n))$ congruence

Definition (Quantifier-free Equality Logic)

Quantifier-free fragment of first-order logic with built-in equality.

$$\{\neg, \land, \lor, =, f_i/\alpha_i, p_i/\alpha_i\}$$

The semantics of = is object identity.

Unlike =, the function symbols f_i of arities α_i are uninterpreted, i.e., have no special meaning or axiomatization.

reflexive

symmetric

- transitive
- **③** $\forall x_1...x_n \forall y_1...y_n (x_1 = y_1 \land ... \land x_n = y_n \rightarrow f(x_1,...,x_n) = f(y_1,...,y_n))$ congruence

Example (Equality Logic with different functions and meanings)

Interpreted functions
$$x = y * z + x \rightarrow y = 0 \lor z + 0 = 0$$

Example (Equality Logic with different functions and meanings)

Interpreted functions
$$x = y * z + x \rightarrow y = 0 \lor z + 0 = 0$$

Uninterpreted functions $x = a(m(y, z), x) \rightarrow y = 0 \lor a(z, 0) = 0$

Example (Equality Logic with different functions and meanings)

Interpreted functions
$$x = y * z + x \rightarrow y = 0 \lor z + 0 = 0$$

Uninterpreted functions $x = a(m(y,z),x) \rightarrow y = 0 \lor a(z,0) = 0$
No functions $x = c \rightarrow y = 0 \lor b = 0$

Removing Interpretation: A Lossy Transformation

Algorithm: Uninterpreting

Input: formula ϕ in equality logic plus interpreted functions Output: formula in equality logic plus uninterpreted functions

Replace each interpreted function symbol by a new uninterpreted function symbol

Example (Forgetful projection)

Interpreted functions
$$x = y * z + x \rightarrow y = 0 \lor z + 0 = 0$$

Uninterpreted functions $x = a(m(y, z), x) \rightarrow y = 0 \lor a(z, 0) = 0$

Removing Interpretation: A Lossy Transformation

Algorithm: Uninterpreting

Input: formula ϕ in equality logic plus interpreted functions Output: formula in equality logic plus uninterpreted functions of different semantics!

Replace each interpreted function symbol by a new uninterpreted function symbol

Example (Forgetful projection)

Interpreted functions
$$x = y * z + x \rightarrow y = 0 \lor z + 0 = 0$$

Uninterpreted functions $x = a(m(y, z), x) \rightarrow y = 0 \lor a(z, 0) = 0$

Removing Interpretation: A Lossy Transformation

Algorithm: Uninterpreting

Input: formula ϕ in equality logic plus interpreted functions Output: formula in equality logic plus uninterpreted functions of different semantics!

Replace each interpreted function symbol by a new uninterpreted function symbol

Example (Forgetful projection)

Interpreted functions
$$x = y * z + x \rightarrow y = 0 \lor z + 0 = 0$$

Uninterpreted functions $x = a(m(y, z), x) \rightarrow y = 0 \lor a(z, 0) = 0$

If the uninterpreted formula is valid, its interpreted variant is valid too, but not vice versa.

Ackermann's Reduction: Idea

- Goal: remove uninterpreted functions
- Replace uninterpreted function terms with new variables
- Add functional consistency axioms as needed from the following axiom scheme

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$$

Algorithm: Ackermann's Reduction

Input: quantifier-free ϕ in equality logic plus uninterpreted functions Output: quantifier-free ϕ^{\flat} in equality logic w/o uninterpreted functions

 $\ensuremath{\mathbf 0}$ Transform ϕ to negation normal form by pushing negations in

Algorithm: Ackermann's Reduction

- $\ensuremath{\mathbf 0}$ Transform ϕ to negation normal form by pushing negations in
- Replace function terms by unique identifiers from inside out

$$f(f(x)) = 1 \lor f(x) \neq 2$$

Algorithm: Ackermann's Reduction

- $\ensuremath{\mathbf 0}$ Transform ϕ to negation normal form by pushing negations in
- Replace function terms by unique identifiers from inside out

$$f(\overbrace{f(x)}^{f_1}) = 1 \lor \overbrace{f(x)}^{f_1} \neq 2$$

Algorithm: Ackermann's Reduction

- $\ensuremath{\mathbf 0}$ Transform ϕ to negation normal form by pushing negations in
- Replace function terms by unique identifiers from inside out

$$\underbrace{f(\overbrace{f(x)}^{f_1})}_{f_2} = 1 \ \lor \ \overbrace{f(x)}^{f_1} \neq 2$$

Algorithm: Ackermann's Reduction

- $\ensuremath{\mathbf 0}$ Transform ϕ to negation normal form by pushing negations in
- Replace function terms by unique identifiers from inside out

$$\underbrace{f(\overbrace{f(x))}^{f_1}}_{f_2} = 1 \ \lor \ \overbrace{f(x)}^{f_1} \neq 2 \leadsto \ f_2 = 1 \lor f_1 \neq 2$$

Algorithm: Ackermann's Reduction

- $\ensuremath{\mathbf 0}$ Transform ϕ to negation normal form by pushing negations in
- Replace function terms by unique identifiers from inside out

$$\underbrace{f(f(x))}_{f_2} = 1 \quad \forall \quad \overbrace{f(x)}^{f_1} \neq 2 \rightsquigarrow \quad f_2 = 1 \lor f_1 \neq 2 \qquad \left[\begin{array}{c} f_1 = f(x) \\ f_2 = f(f_1) \end{array} \right]$$

Algorithm: Ackermann's Reduction

Input: quantifier-free ϕ in equality logic plus uninterpreted functions Output: quantifier-free ϕ^b in equality logic w/o uninterpreted functions

- $\ensuremath{\mathbf 0}$ Transform ϕ to negation normal form by pushing negations in
- Replace function terms by unique identifiers from inside out

$$\underbrace{f(\overbrace{f(x))}^{f_1}}_{f_2} = 1 \quad \forall \quad \overbrace{f(x)}^{f_1} \neq 2 \quad \Rightarrow \quad f_2 = 1 \quad \forall f_1 \neq 2 \quad \begin{bmatrix} f_1 = f(x) \\ f_2 = f(f_1) \end{bmatrix}$$

 $oldsymbol{\circ}$ Add functional consistency axiom for every pair of arguments of f

$$(x = f_1 \rightarrow f_2 = f_1) \rightarrow f_2 = 1 \lor f_1 \neq 2$$

Algorithm: Ackermann's Reduction

Input: quantifier-free ϕ in equality logic plus uninterpreted functions Output: quantifier-free ϕ^b in equality logic w/o uninterpreted functions

- $\ensuremath{\mathbf 0}$ Transform ϕ to negation normal form by pushing negations in
- Replace function terms by unique identifiers from inside out

$$\underbrace{f(\overbrace{f(x)}^{f_1})}_{f_2} = 1 \ \lor \ \overbrace{f(x)}^{f_1} \neq 2 \leadsto \ f_2 = 1 \lor f_1 \neq 2 \quad \left[\begin{array}{c} f_1 = f(x) \\ f_2 = f(f_1) \end{array} \right]$$

 $oldsymbol{\circ}$ Add functional consistency axiom for every pair of arguments of f

$$(x = f_1 \rightarrow f_2 = f_1) \rightarrow f_2 = 1 \lor f_1 \neq 2$$

 ϕ^{\flat} valid iff ϕ valid

Example

Input: quantifier-free ϕ in equality logic plus uninterpreted functions $x_1 = x_2 \rightarrow f(x_1) \neq f(x_2) \lor f(x_1) \neq f(x_3)$

 $\ensuremath{\mathbf 0}$ Transform ϕ to negation normal form by pushing negations in

Example

Input: quantifier-free ϕ in equality logic plus uninterpreted functions $x_1 = x_2 \rightarrow f(x_1) \neq f(x_2) \lor f(x_1) \neq f(x_3)$

- $\ \, \bullet \ \,$ Transform ϕ to negation normal form by pushing negations in
- 2 Replace function terms by unique identifiers from inside out

$$x_1 = x_2 \rightarrow f_1 \neq f_2 \lor f_1 \neq f_3$$

Example

Input: quantifier-free ϕ in equality logic plus uninterpreted functions $x_1 = x_2 \rightarrow f(x_1) \neq f(x_2) \lor f(x_1) \neq f(x_3)$

- lacktriangle Transform ϕ to negation normal form by pushing negations in
- 2 Replace function terms by unique identifiers from inside out

$$x_1 = x_2 \rightarrow f_1 \neq f_2 \lor f_1 \neq f_3$$

$$\begin{bmatrix}
f_1 = f(x_1) \\
f_2 = f(x_2) \\
f_3 = f(x_3)
\end{bmatrix}$$

Example

Input: quantifier-free ϕ in equality logic plus uninterpreted functions $x_1 = x_2 \rightarrow f(x_1) \neq f(x_2) \lor f(x_1) \neq f(x_3)$

- lacktriangle Transform ϕ to negation normal form by pushing negations in
- Replace function terms by unique identifiers from inside out

$$x_1 = x_2 \rightarrow f_1 \neq f_2 \lor f_1 \neq f_3$$

$$\begin{bmatrix} f_1 = f(x_1) \\ f_2 = f(x_2) \\ f_3 = f(x_3) \end{bmatrix}$$

 \odot Add functional consistency axiom for every pair of arguments of f

$$((x_1 = x_2 \to f_1 = f_2) \\ \land (x_1 = x_3 \to f_1 = f_3) \\ \land (x_2 = x_3 \to f_2 = f_3)) \\ \to (x_1 = x_2 \to f_1 \neq f_2 \lor f_1 \neq f_3)$$

Definition (Quantifier-free Equality Logic without Functions)

Quantifier-free fragment of first-order logic with built-in equality as only predicate and no functions.

$$\{\neg, \land, \lor, =\}$$

The semantics of = is object identity.

Example

$$x = c \rightarrow y = 0 \lor b = 0$$

Algorithm: Satisfiability of QF Equality Logic without Functions

Input: quantifier-free ϕ^{\flat} in equality logic w/o uninterpreted functions Output: satisfiable / unsatisfiable

1 Transform ϕ^{\flat} into DNF (can be optimized)

Algorithm: Satisfiability of QF Equality Logic without Functions

- **1** Transform ϕ^{\flat} into DNF (can be optimized)
- Consider each disjunct F separately

Algorithm: Satisfiability of QF Equality Logic without Functions

- **1** Transform ϕ^{\flat} into DNF (can be optimized)
- Consider each disjunct F separately
- **Solution** For each variable x, define equivalence class $[x] := \{x\}$

Algorithm: Satisfiability of QF Equality Logic without Functions

- **1** Transform ϕ^{\flat} into DNF (can be optimized)
- Consider each disjunct F separately
- **3** For each variable x, define equivalence class $[x] := \{x\}$
- For each $(x = y) \in F$, merge equivalence classes [x] and [y] by $[x] := [y] := [x] \cup [y]$.

Algorithm: Satisfiability of QF Equality Logic without Functions

- Transform ϕ^{\flat} into DNF (can be optimized)
- Consider each disjunct F separately
- **3** For each variable x, define equivalence class $[x] := \{x\}$
- For each $(x = y) \in F$, merge equivalence classes [x] and [y] by $[x] := [y] := [x] \cup [y]$.
- For each $(x \neq y) \in F$, if $x \in [y]$ then F unsat; consider next disjunct

Algorithm: Satisfiability of QF Equality Logic without Functions

- Transform ϕ^{\flat} into DNF (can be optimized)
- Consider each disjunct F separately
- **3** For each variable x, define equivalence class $[x] := \{x\}$
- For each $(x = y) \in F$, merge equivalence classes [x] and [y] by $[x] := [y] := [x] \cup [y]$.
- For each $(x \neq y) \in F$, if $x \in [y]$ then F unsat; consider next disjunct
- return sat

QF Equality Logic without Functions

Algorithm: Satisfiability of QF Equality Logic without Functions

Input: quantifier-free ϕ^{\flat} in equality logic w/o uninterpreted functions Output: satisfiable / unsatisfiable

- Transform ϕ^{\flat} into DNF (can be optimized)
- Consider each disjunct F separately
- **3** For each variable x, define equivalence class $[x] := \{x\}$
- For each $(x = y) \in F$, merge equivalence classes [x] and [y] by $[x] := [y] := [x] \cup [y]$.
- For each $(x \neq y) \in F$, if $x \in [y]$ then F unsat; consider next disjunct
- return sat

Much more efficient algorithms exist even with UF

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a=c\rightarrow f_1=f_2)\land a=b\land d=e\land e\neq a\land b=c\land f_1\neq f_2$$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

 $\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

 $\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$

$$[a] = \{a \} [d] = \{d \}$$

 $[a] = \{a \} [d] = \{d \} [f_1] = \{f_1 \}$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

 $\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$

[a] =
$$\{a, b\}$$
 $[d] = \{d\}$
[a] = $\{a\}$ $[d] = \{d\}$ $[f_1] = \{f_1\}$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

 $\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

 $\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$

$$[a] = \{a, b, c\}$$
 $[d] = \{d, e\}$
 $[a] = \{a\}$ $[d] = \{d\}$ $[f_1] = \{f_1\}$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

$$\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

$$[a] = \{a, b, c\}$$
 $[d] = \{d, e\}$ $a \neq c$ unsat $[a] = \{a\}$ $[d] = \{d\}$ $[f_1] = \{f_1\}$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

 $\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$

[a] =
$$\{a, b, c\}$$
 [d] = $\{d, e\}$ a $\neq c$ unsat
[a] = $\{a, b\}$ [d] = $\{d\}$ [f₁] = $\{f_1\}$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

 $\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$

$$[a] = \{a, b, c\} \quad [d] = \{d, e\}$$

$$[a] = \{a, b \quad \} \quad [d] = \{d, e\} \quad [f_1] = \{f_1 \quad \}$$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

 $\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$

[a] =
$$\{a, b, c\}$$
 [d] = $\{d, e\}$ a $\neq c$ unsat
[a] = $\{a, b, c\}$ [d] = $\{d, e\}$ [f₁] = $\{f_1$

Example

$$a = b \land d = e \land e \neq a \land b = c \land f(a) \neq f(c)$$
 satisfiable?

Ackermann's reduction (for satisfiability!)

$$(a = c \rightarrow f_1 = f_2) \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

DNF

$$a \neq c \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$$

 $\lor f_1 = f_2 \land a = b \land d = e \land e \neq a \land b = c \land f_1 \neq f_2$

[a] =
$$\{a, b, c\}$$
 [d] = $\{d, e\}$ a $\neq c$ unsat
[a] = $\{a, b, c\}$ [d] = $\{d, e\}$ [f₁] = $\{f_1, f_2\}$ f₁ $\neq f_2$ unsat