André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

}

throw new NoSuchElementException();

© Quantifier-free Equality Logic
@ EUF - QF Equality Logic with Uninterpreted Functions
@ QF Equality Logic without Functions

© Quantifier-free Equality Logic
@ EUF - QF Equality Logic with Uninterpreted Functions
@ QF Equality Logic without Functions

Quantifier-free fragment of first-order logic with built-in equality.

{_'7 AV, =, ﬁ/aiapi/ai}

The semantics of = is object identity.

Unlike =, the function symbols f; of arities «; are uninterpreted, i.e.,
have no special meaning or axiomatization.

x=g(y,z) = f(x) = f(g(y,2))

Quantifier-free fragment of first-order logic with built-in equality.

{_'7 AV, =, ﬁ/aiapi/ai}

The semantics of = is object identity.

Unlike =, the function symbols f; of arities «; are uninterpreted, i.e.,
have no special meaning or axiomatization.

F(f(f(a))) = anf(f(F(f(f(a)))) =a—f(a)=a

Quantifier-free fragment of first-order logic with built-in equality.

{_‘7 NV, =, ﬁ/aia pi/ai}

The semantics of = is object identity.

Unlike =, the function symbols f; of arities «; are uninterpreted, i.e.,
have no special meaning or axiomatization.

Q Vx(x=x) reflexive

Quantifier-free fragment of first-order logic with built-in equality.

{_‘7 NV, =, ﬁ/aia pi/ai}

The semantics of = is object identity.

Unlike =, the function symbols f; of arities «; are uninterpreted, i.e.,
have no special meaning or axiomatization.

Q Vx(x=x) reflexive
Q VxVy(x=y —y=x) symmetric

Quantifier-free fragment of first-order logic with built-in equality.

{_‘7 NV, =, ﬁ/aia pi/ai}

The semantics of = is object identity.

Unlike =, the function symbols f; of arities «; are uninterpreted, i.e.,
have no special meaning or axiomatization.

Q Vx(x =x) reflexive
Q VxVy(x=y —y=x) symmetric
Q xVyVz(x=yANy=2z—x=2) transitive

Quantifier-free fragment of first-order logic with built-in equality.

{_‘7 NV, =, ﬁ/aia pi/ai}

The semantics of = is object identity.

Unlike =, the function symbols f; of arities «; are uninterpreted, i.e.,
have no special meaning or axiomatization.

Q Vx(x=x) reflexive
Q VxVy(x=y —y=x) symmetric
Q xVyVz(x=yANy=2z—x=2) transitive
Q Vxi.x,Vy1..vn (X1 =y A AXp=yn— f(x1,.., %) = f(y1, ..,y,,))
congruence

Quantifier-free fragment of first-order logic with built-in equality.

{_‘7 NV, =, ﬁ/aia pi/ai}

The semantics of = is object identity.

Unlike =, the function symbols f; of arities «; are uninterpreted, i.e.,
have no special meaning or axiomatization.

Q Vx(x=x) reflexive
Q VxVy(x=y —y=x) symmetric
Q xVyVz(x=yANy=2z—x=2) transitive
Q Vxi.x,Vy1..vn (X1 =y A AXp=yn— f(x1,.., %) = f(y1, ..,y,,))
congruence

Q Vxi.x,Vy1..yn (x1 =y1AAXp = yn — (p(x1, ., xn) < p(y1, ~7Yn)))
"~ AndréPlatzer (CMU) 15-819M/04: Data, Code, Decisions . 2/10

Example (Equality Logic with different functions and meanings)

Interpreted functions xX=yxz+x—y=0vz4+0=0

Example (Equality Logic with different functions and meanings)

Interpreted functions xX=yxz+x—y=0vz4+0=0
Uninterpreted functions x = a(m(y,z),x) -y =0V a(z,0) =0

Example (Equality Logic with different functions and meanings)

Interpreted functions xX=yxz+x—y=0vz4+0=0
Uninterpreted functions x = a(m(y,z),x) -y =0V a(z,0) =0
No functions x=c—oy=0Vb=0

Input: formula ¢ in equality logic plus interpreted functions
Output: formula in equality logic plus uninterpreted functions

© Replace each interpreted function symbol by a new uninterpreted
function symbol

Example (Forgetful projection)

Interpreted functions XxX=yxz+x—y=0vz4+0=0
Uninterpreted functions x = a(m(y,z),x) -y =0V a(z,0) =0

Input: formula ¢ in equality logic plus interpreted functions
Output: formula in equality logic plus uninterpreted functions
of different semantics!

© Replace each interpreted function symbol by a new uninterpreted
function symbol

Example (Forgetful projection)

Interpreted functions XxX=yxz+x—y=0vz4+0=0
Uninterpreted functions x = a(m(y,z),x) -y =0V a(z,0) =0

Input: formula ¢ in equality logic plus interpreted functions
Output: formula in equality logic plus uninterpreted functions
of different semantics!

© Replace each interpreted function symbol by a new uninterpreted
function symbol

Example (Forgetful projection)

Interpreted functions XxX=yxz+x—y=0vz4+0=0
Uninterpreted functions x = a(m(y,z),x) -y =0V a(z,0) =0

If the uninterpreted formula is valid, its interpreted variant is valid too,
but not vice versa.

@ Goal: remove uninterpreted functions
@ Replace uninterpreted function terms with new variables

@ Add functional consistency axioms as needed from the following
axiom scheme

X1=Y1 A Axp=Yn— f(x1,..., %) = F(y1,...,¥n)

Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in

Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in

© Replace function terms by unique identifiers from inside out

f(f(x))=1V f(x)#2

Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in
© Replace function terms by unique identifiers from inside out
fi fi

~~ —_~
f(f(x))=1 Vv f(x)#2

Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in

© Replace function terms by unique identifiers from inside out

J\ o
f(f(x))=1 Vv f(x)#2
———

f

Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in

© Replace function terms by unique identifiers from inside out

o 2
FFOGN) =1V F(x)#2~ h=1VH #2
N——

f

Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in

© Replace function terms by unique identifiers from inside out

i fi
f(ﬁ)?)):l\/’f-(/x\)#2w h=1Vf #£2 flif(x)
' f = f(£)

f

Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in

© Replace function terms by unique identifiers from inside out

i fi
f(ﬁ)?)):l\/’f-(/x\)#2w h=1Vf #£2 flif(x)
' f = f(£)

f

© Add functional consistency axiom for every pair of arguments of f

(x=h—oh=h) = Hh=1V f#2

Input: quantifier-free ¢ in equality logic plus uninterpreted functions
Output: quantifier-free ¢” in equality logic w/o uninterpreted functions

© Transform ¢ to negation normal form by pushing negations in
© Replace function terms by unique identifiers from inside out
fi f

~ N ~ = f1=f(x)
FFON) =1V F)£2~ h=1vhig2 | 1=
—_ f = f(f1)

f

© Add functional consistency axiom for every pair of arguments of f

(x=h—h=H) — HL=1V f#2

¢ valid iff ¢ valid !

Example
Input: quantifier-free ¢ in equality logic plus uninterpreted functions
x1=x = f(xa) # f(x) V f(x1) # f(x3)

@ Transform ¢ to negation normal form by pushing negations in

Example
Input: quantifier-free ¢ in equality logic plus uninterpreted functions
X1 = Xp — f(Xl) £ f(Xz) V f(Xl) =£ f(X3)
@ Transform ¢ to negation normal form by pushing negations in

@ Replace function terms by unique identifiers from inside out

xi=xx—h#hHhVA#H

Example
Input: quantifier-free ¢ in equality logic plus uninterpreted functions
X1 = Xp — f(Xl) £ f(Xz) V f(Xl) =£ f(X3)
@ Transform ¢ to negation normal form by pushing negations in

@ Replace function terms by unique identifiers from inside out

f1=f(X1)
xx=xx—=h#HOVhHi#RH fr = f(x)
3 = f(x3)

Example
Input: quantifier-free ¢ in equality logic plus uninterpreted functions
X1 = Xp — f(Xl) £ f(Xz) V f(Xl) =£ f(X3)
@ Transform ¢ to negation normal form by pushing negations in

@ Replace function terms by unique identifiers from inside out

f1=f(X1)
xx=xx—=h#HOVhHi#RH f = f(x2)
3 = f(x3)

© Add functional consistency axiom for every pair of arguments of f

(a=x—>h=h)
ANx1=x3— fL =1H)
Ao =x3 — h =f))

— (xi=x—h#hHVAH#R)

Quantifier-free fragment of first-order logic with built-in equality as only
predicate and no functions.

{_|’ /\7 \/’ :}

The semantics of = is object identity.

Example

x=c—y=0vVb=0

Input: quantifier-free ¢° in equality logic w/o uninterpreted functions
Output: satisfiable / unsatisfiable

@ Transform ¢ into DNF (can be optimized)

Input: quantifier-free ¢” in equality logic w/o uninterpreted functions
Output: satisfiable / unsatisfiable

@ Transform ¢ into DNF (can be optimized)
@ Consider each disjunct F separately

Input: quantifier-free ¢” in equality logic w/o uninterpreted functions
Output: satisfiable / unsatisfiable

@ Transform ¢ into DNF (can be optimized)
@ Consider each disjunct F separately

© For each variable x, define equivalence class [x] := {x}

Input: quantifier-free ¢” in equality logic w/o uninterpreted functions
Output: satisfiable / unsatisfiable

@ Transform ¢ into DNF (can be optimized)
@ Consider each disjunct F separately
© For each variable x, define equivalence class [x] := {x}

@ For each (x = y) € F, merge equivalence classes [x] and [y] by

[x] =yl = Uyl

Input: quantifier-free ¢” in equality logic w/o uninterpreted functions
Output: satisfiable / unsatisfiable

@ Transform ¢ into DNF (can be optimized)

@ Consider each disjunct F separately

© For each variable x, define equivalence class [x] := {x}

@ For each (x = y) € F, merge equivalence classes [x] and [y] by
[x] == Iy] == XUyl

© For each (x # y) € F, if x € [y] then F unsat; consider next disjunct

Input: quantifier-free ¢” in equality logic w/o uninterpreted functions
Output: satisfiable / unsatisfiable

@ Transform ¢ into DNF (can be optimized)
@ Consider each disjunct F separately
© For each variable x, define equivalence class [x] := {x}
@ For each (x = y) € F, merge equivalence classes [x] and [y] by
[x] == Iy] == XUyl
© For each (x # y) € F, if x € [y] then F unsat; consider next disjunct
Q return sat

Input: quantifier-free ¢” in equality logic w/o uninterpreted functions
Output: satisfiable / unsatisfiable

@ Transform ¢ into DNF (can be optimized)
@ Consider each disjunct F separately
© For each variable x, define equivalence class [x] := {x}
@ For each (x = y) € F, merge equivalence classes [x] and [y] by
[x] == Iy] == XUyl
© For each (x # y) € F, if x € [y] then F unsat; consider next disjunct
Q return sat

Much more efficient algorithms exist even with UF J

Example

a=bAd=eNe#aANb=cAf(a)#f(c) satisfiable?

Example
a=bAd=eNe#aANb=cAf(a)#f(c) satisfiable?

Ackermann’s reduction (for satisfiability!)

(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hh
Vhi=hANa=bANd=eNe#aANb=cANh#h

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hh
VhA=hANa=bAd=eANe#aANb=cANh#*HhH

Equivalence classes

[a] ={a } [dl={d }
[al={a } [dl={d } [Al={h }

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hhh
VhA=hANa=bAd=eANe#aANb=cANh#*HhH

Equivalence classes

[a] ={ab } [d]={d }
[al={a } [dl={d } [Al={h }

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hhh
VhA=hANa=bAd=eANe#aANb=cANh#*HhH

Equivalence classes

[a] ={a,b } [d]={d,e}
[al={a } [dl={d } [Al={A }

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hh
VhA=hANa=bAd=eANe#aANb=cANh#*HhH

Equivalence classes

[a] = {a,b,c} [d]={d,e}
[al={a } [dl={d } [Al={A }

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hhh
VhA=hANa=bAd=eANe#aANb=cANh#*HhH

Equivalence classes

[a] ={a,b,c} [d] ={d, e} a # ¢ unsat
[al={a } [dl={d } [Al={A }
~ AndréPlatzer (CMU) 15-819M/04: Data, Code, Decisions 10/ 10

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hh
VhA=hANa=bAd=eANe#aANb=cANh#*HhH

Equivalence classes

[a] ={a,b,c} [d] ={d, e} a # ¢ unsat
[a] ={a,b } [d]={d } [Al={A }
~ AndréPlatzer (CMU) 15-819M/04: Data, Code, Decisions 10/ 10

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hh
VhA=hANa=bAd=eNe#aANb=cANh#HhH

Equivalence classes

[a] ={a,b,c} [d] ={d, e} a # ¢ unsat
[a] ={a,b } [d]={d,e} [A]l={h }
~ AndréPlatzer (CMU) 15-819M/04: Data, Code, Decisions 10/ 10

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hh
VhA=hANa=bAd=eANe#aANb=cANh#*HhH

Equivalence classes

[a] ={a,b,c} [d] ={d, e} a # ¢ unsat
[a] ={a,b,c} [d]={d,e} [A]l={h }
~ AndréPlatzer (CMU) 15-819M/04: Data, Code, Decisions 10/ 10

Example
a=bAd=eNe#aANb=cAf(a)+#f(c) satisfiable?
Ackermann’s reduction (for satisfiability!)
(a=c—fA=h)Na=bAd=eNe#aANb=cANfA#h
DNF

a#zcNa=bANd=eNeFaANb=cNfh#Hh
VhA=hANa=bAd=eANe#aANb=cANh#*HhH

Equivalence classes

[a] ={a,b,c} [d] ={d, e} a # ¢ unsat
[a] ={a,b,c} [d]={d,e} [A]={A,H} fi#funsat

	Quantifier-free Equality Logic
	EUF - QF Equality Logic with Uninterpreted Functions
	QF Equality Logic without Functions

