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Approaches to Formal Software Verification

Concrete programs, Concrete programs,
Complex properties Simple properties

Abstract programs, Abstract programs,
Complex properties Simple properties

KeY

Spin

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 3 / 40



Formal Verification: Deduction

Real

World

Java+

JML
Sy

nt
ax

Dynamic

Logic

Translation

Semantics

Sequent

Calculus

Kripke

Semantics
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Limitations of Propositional Logic

Fixed, finite number of objects

Cannot express: let g be group with arbitrary number of elements

No functions or relations with arguments

4 Can express: finite function/relation table with indexed variables pij

8 Cannot express:
properties of function/relation on all arguments: “+” associative

Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc.
Propositional formulas look at one single interpretation at a time
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Syntax of First-Order Logic: Signature

Definition (First-Order Signature)

First-order signature Σ = (PSym, FSym, α)

Predicate or Relation Symbols PSym = {pi | i ∈ IIN}
Function Symbols FSym = {fi | i ∈ IIN}
Typing function α, set of types T

α(p) ∈ T ∗ for all p ∈ PSym

α(f ) ∈ T ∗ × T for all f ∈ FSym

Definition (Variables)

VSym = {xi | i ∈ IIN} set of typed variables

In contrast to “standard” FOL, our symbols are typed
Necessary to model a typed programming language such as Java!

Allow any non-reserved name for symbols, not merely p3, f17, . . .
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Syntax of First-Order Logic: Signature

Declaration of signature symbols

Write T x ; to declare variable x of type T

Write p(T1, . . . ,Tr ); for α(p) = (T1, . . . ,Tr )

Write T f (T1, . . . ,Tr ); for α(f ) = ((T1, . . . ,Tr ), T )

Similar convention as in Java, no overloading of symbols
Case r = 0 is allowed, then write p instead of p(), etc.

Example

Variables boolean b; int i;

Predicates isEmpty(List); alertOn;

Functions int arrayLookup(int); java.lang.Object o;
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OO Type Hierarchy

We want to model the behavior of Java programs
Admissible types T form object-oriented type hierarchy

Definition (OO Type Hierarchy)

T is finite set of types (not parameterized)

Given subtype relation v, assume T has all supertypes, i.e., T is
u-closed

Dynamic types Td ⊆ T , where > ∈ Td
Abstract types Ta ⊆ T , where ⊥ ∈ Ta
Td ∩ Ta = ∅
Td ∪ Ta = T
⊥vT v> for all T ∈ T
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OO Type Hierarchy

Example

Using UML notation

⊤

int

Object

AbstractCollection List

AbstractList

ArrayList

Null

⊥
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OO Type Hierarchy

Dynamic types are those with direct elements

Abstract types for abstract classes and interfaces

Java 1.5+ is u-closed

In Java primitive (value) and object types incomparable

⊥ is abstract and hence no object ever can have this type
⊥ cannot occur in declaration of signature symbols

Each abstract type except ⊥ has a non-empty dynamic subtype

In Java > is chosen to have no direct elements

Java has infinitely many types: int[], int[][],. . .
Restrict T to the finitely many types that occur in a given program

Example (The Minimal Type Hierarchy)

T = {⊥, >}
All signature symbols have same type >: drop type, untyped logic

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 13 / 40



OO Type Hierarchy

Dynamic types are those with direct elements

Abstract types for abstract classes and interfaces

Java 1.5+ is u-closed

In Java primitive (value) and object types incomparable

⊥ is abstract and hence no object ever can have this type
⊥ cannot occur in declaration of signature symbols

Each abstract type except ⊥ has a non-empty dynamic subtype

In Java > is chosen to have no direct elements

Java has infinitely many types: int[], int[][],. . .
Restrict T to the finitely many types that occur in a given program

Example (The Minimal Type Hierarchy)

T = {⊥, >}
All signature symbols have same type >: drop type, untyped logic
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Reserved Signature Symbols

Reserved signature symbols

Equality symbol
.

=∈ PSym declared as
.

= (>, >)

Written infix: x
.

= 0

Type predicate symbol @−T ∈ PSym for each T ∈ T
Declared as @−T (>)

Written prefix: i@−int — read “instance of”

Type cast symbol (T ) ∈ FSym for each T ∈ T
Declared as T (T )(>)
Written prefix: (String)o — read “cast o to String”

So far, we have a type system and a signature — where is the logic?
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Terms

First-order terms, informally

Think of first-order terms as expressions in a programming language
Built up from variables, constants, function symbols

First-order terms have no side effects (like Promela, unlike Java)

First-order terms have a type and must respect type hierarchy

type of f (g(x)) is result type in declaration of function f
in f (g(x)) the result type of g is subtype of argument type of f , etc.

Definition (First-Order Terms {TermT}T∈T with type T ∈ T )

x is term of type T for variable declared as T x ;

f (t1, . . . , tr ) is term of type T for

function symbol declared as T f (T1, . . . ,Tr ); and
terms ti of type T ′

i vTi for 1 ≤ i ≤ r

There are no other terms (inductive definition)

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 15 / 40



Terms

First-order terms, informally

Think of first-order terms as expressions in a programming language
Built up from variables, constants, function symbols

First-order terms have no side effects (like Promela, unlike Java)

First-order terms have a type and must respect type hierarchy

type of f (g(x)) is result type in declaration of function f
in f (g(x)) the result type of g is subtype of argument type of f , etc.

Definition (First-Order Terms {TermT}T∈T with type T ∈ T )

x is term of type T for variable declared as T x ;

f (t1, . . . , tr ) is term of type T for

function symbol declared as T f (T1, . . . ,Tr ); and
terms ti of type T ′

i vTi for 1 ≤ i ≤ r

There are no other terms (inductive definition)
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Terms

Example

Signature: int i; short j; List l; int f(int);

f(i) has result type int and is contained in Termint
f(j) has result type int (when shortvint)

f(l) is ill-typed (when int, List incomparable)

f(i,i) is not a term (doesn’t match declaration)

(int)j is term of type int

even (int)l is term of type int (type cast always well-formed)

If f is constant (r = 0) write f instead of f ()

Use infix notation liberally, where appropriate:
declare int +(int, int); then write i+j, etc.

Use brackets to disambiguiate parsing:
(i+j)*i
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First-Order Atomic Formulas

Definition (Atomic First-Order Formulas)

p(t1, . . . , tr ) is atomic first-order formula for

predicate symbol declared as p(T1, . . . ,Tr ); and

terms ti of type T ′i vTi for 1 ≤ i ≤ r

Example

Signature: int i; short j; List l; <(int, int);

i < i is an atomic first-order formula

i < j is an atomic first-order formula (when shortvint)

i < l is ill-typed (when int, List incomparable)

i
.

=j and even i
.

=l are atomic first-order formulas

i@−short is an atomic first-order formula
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First-Order Formulas

Definition (Set of First-Order Formulas For)

Truth constants true, false and all first-order atomic formulas are
first-order formulas

If φ and ψ are first-order formulas then

!φ, (φ & ψ), (φ | ψ), (φ −> ψ), (φ <−> ψ)

are also first-order formulas

If T x is a variable declaration, φ a first-order formula,
then ∀T x ; φ and ∃T x ; φ are first-order formulas
Any occurrence of x in φ must be well-typed

∀T x ; φ called universally quantified formula

∃T x ; φ called existentially quantified formula
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First-Order Formulas

In ∀T x ; φ and ∃T x ; φ call φ the scope of x bound by ∀/∃
Variables bound in quantified formulas similar to
program locations declared as local variables/formal parameters

Example

∀ int i ; ∃ int j ; i < j is a first-order formula

∀ int i ; ∃ List l ; i < l is ill-typed

∀ int i ; i < j is a first-order formula
if j is a constant compatible with int

(∀ int i ; ∀ int j ; i < j) | (∀ int i ; ∀ int j ; i > j)
is a first-order formula
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Remark on Concrete Syntax

Text book Spin KeY Java

Negation ¬ ! ! !
Conjunction ∧ && & &&
Disjunction ∨ || | ||
Implication →, ⊃ −> −> n/a
Equivalence ↔ <−> <−> n/a
Universal Quantifier ∀ x ; φ n/a \forallT x ; φ n/a
Existential Quantifier ∃ x ; φ n/a \existsT x ; φ n/a
Value equality

.
= == = ==

For quantifiers we normally use textbook syntax and
suppress type information to ease readability

For propositional connectives we use KeY syntax
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First-Order Semantics

From propositional to first-order semantics

In prop. logic, interpretation of variables with {T ,F}
In first-order logic we must assign meaning to:

variables bound in quantifiers
constant and function symbols
predicate symbols

Each variable or function value may denote a different object

Respect typing: int i, List l must denote different objects

What we need (to interpret a first-order formula)

1 A collection of typed universes of objects (akin to heap objects)

2 A mapping from variables to objects

3 A mapping from function arguments to function values

4 The set of argument tuples where a predicate is true
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First-Order Domains/Universes

1 A collection of typed universes of objects

Definition (Universe/Domain)

A non-empty set D of objects is a universe or domain
Each element of D has a fixed type given by δ : D → Td

Like heap objects and values in Java

Notation for the domain elements type-compatible with T ∈ T :
DT = {d ∈ D | δ(d)vT}
For each dynamic type T ∈ Td there must be at least one domain
element type-compatible with it: DT 6= ∅

André Platzer (CMU) 15-819M/08: Data, Code, Decisions 23 / 40



First-Order Universes

Example

>

⊥

int

short

Object

D = {17, o}
δ(17) = short, δ(o) = Object

Then Dshort = Dint = {17}, DObject = {o},
D> = D = {17, o}, and D⊥ = {}
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First-Order Models

3 A mapping from function arguments to function values

4 The set of argument tuples where a predicate is true

Definition (First-Order Model)

Let D be a domain with typing function δ

Let f be declared as T f (T1, . . . ,Tr );

Let p be declared as p(T1, . . . ,Tr );

Let I(f ) : DT1 × · · · × DTr → DT

Let I(p) ⊆ DT1 × · · · × DTr

Then M = (D, δ, I) is a first-order model
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First-Order Models

Example

Signature: int i; short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

I(i) = 17
I(j) = 17
I(obj) = o

Dint I(f )

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

One of uncountably many possible first-order models!
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Semantics of Reserved Signature Symbols

Definition

Equality symbol
.

= declared as
.

= (>, >)

Model is fixed as I(
.

=) = {(d , d) | d ∈ D}
“Referential Equality” (holds if arguments refer to identical object)

Exercise: write down the predicate table for example domain

Type predicate symbol @−T for any T , declared as @−T (>)

I(@−T ) = DT

Exercise: what is I(@−Object)?

Type cast symbol (T ) for each T , declared as T (T )(>)

I((T ))(x) =

{
x if cast succeeds (δ(x)vT )

d otherwise, for an arbitrary fixed d ∈ DT

Exercise: what is I((int))(17)?
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Signature Symbols vs. Domain Elements

Domain elements are not just the terms representing them

First-order formulas and terms have no access to domain

As in Java: identity and memory layout of values/objects hidden

Think of a first-order model as a “heap” of first-order logic

Example

Signature: Object obj1, obj2;

Domain: D = {o}

In this model, necessarily I(obj1) = I(obj2) = o

Effect similar to aliasing in Java with reference types
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Variable Assignments

2 A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements
It respects the variable type, i.e., if x has type T then β(x) ∈ DT

Definition (Modified Variable Assignment)

Let y be variable of type T , β variable assignment, d ∈ DT :

βd
y (x) :=

{
β(x) if x 6= y
d if x = y
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Semantic Evaluation of Terms

Given a first-order model M and a variable assignment β
it is possible to evaluate first-order terms under M and β

Analogy

Evaluating an expression in a programming language
with respect to a given heap (M) and binding of local variables (β)

Definition (Valuation of Terms)

valM,β : Term→ D such that valM,β(t) ∈ DT for t ∈ TermT :

valM,β(x) = β(x) (recall that β respects typing)

valM,β(f (t1, . . . , tr )) = I(f )(valM,β(t1), . . . , valM,β(tr ))
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Semantic Evaluation of Terms

Example

Signature: int i; short j; int f(int);
D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

I(i) = 17
I(j) = 17

Dint I(f)

2 17
17 2

Var β

obj o
x 17

valM,β(f(f(i))) ?

= 17

valM,β(x) ?

= 17

valM,β((int)obj) ?

= 2 , say
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Semantic Evaluation of Formulas

Formulas are true or false
A validity relation is more convenient than a function

Definition (Validity Relation for Formulas)

M, β |= φ for φ ∈ For “M, β models φ”

M, β |= p(t1, . . . , tr ) iff (valM,β(t1), . . . , valM,β(tr )) ∈ I(p)

M, β |= φ & ψ iff M, β |= φ and M, β |= ψ

. . . as in propositional logic

M, β |= ∀T x ; φ iff M, βd
x |= φ for all d ∈ DT

M, β |= ∃T x ; φ iff M, βd
x |= φ for at least one d ∈ DT
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Semantic Evaluation of Formulas

Example

Signature: short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

I(j) = 17
I(obj) = o

Dint I(f )

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

M, β |= f (j) < j ?

M, β |= ∃ int x ; f (x)
.

= x ?

M, β |= ∀ Object o1; ∀ Object o2; o1
.

= o2 ?
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Semantic Notions

Definition (Satisfiability, Truth, Validity)

M, β |= φ (φ is satisfiable)
M |= φ iff for all β : M, β |= φ (φ is true in M)

|= φ iff for all M : M |= φ (φ is valid)

Closed formulas that are satisfiable are also true: one top-level notion

Example

f (j) < j is true in M
∃ int x ; i

.
= x is valid

∃ int x ; !(x
.

= x) is not satisfiable
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Untyped First-Order Logic

Most logic textbooks introduce untyped logic

How to obtain untyped logic as a special case

Minimal Type Hierarchy: T = {⊥, >}
D = D> 6= ∅: only one populated type >, drop all typing info

Signature merely specifies arity of functions and predicates:
Write f /1, < /2, i/0, etc.

Untyped logic is suitable whenever we model a uniform domain

Typical applications: pure mathematics such as algebra
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Untyped First-Order Logic

Example (Axiomatization of a group in first-order logic)

Signature ΣG : FSym = {◦/2, e/0}, PSym = { .= /2}
Let G be the following formulas:

Left identity ∀ x ; e ◦ x
.

= x
Left inverse ∀ x ; ∃ y ; y ◦ x

.
= e

Associativity ∀ x ; ∀ y ; ∀ z ; (x ◦ y) ◦ z
.

= x ◦ (y ◦ z)

Let φ be ΣG -formula.
Whenever |= G −> φ, then φ is a theorem of group theory
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Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?
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Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Example (At least two elements)

∃ x ; ∃ y ; !(x
.

= y)

How to do this without built-in equality?
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Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Example (Strict partial order)

PSym = {< /2}
Irreflexivity ∀ x ; !(x < x)
Asymmetry ∀ x ; ∀ y ; (x < y −> !(y < x))
Transitivity ∀ x ; ∀ y ; ∀ z ;

(x < y & y < z −> x < z)
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Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Example (All models have infinite domain)

Signature and axioms of irreflexive order plus

Existence Successor ∀ x ; ∃ y ; x < y
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Modeling with First-Order Logic

First-Order

Formulas

First-Order

Models

Which ?

Example (Abstract data types)

FSym = { Stack push(int, Stack);
int pop(Stack);
Stack nil; }

∀ int i ; ∀Stack s; pop(push(i , s))
.

= s
· · ·
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Why such a Complicated First-Order Semantics?

Why not take terms and properties at their “face value”?

Definition (Herbrand Model (untyped logic))

A first-order model where

Domain D are all variable-free (i.e., ground) terms

Each domain element is represented as a term

Interpretation of function symbols is identity:
I(f )(d1, . . . , dr ) = f (d1, . . . , dr )

Major limitations of Herbrand models

Too many different domain elements: 1 + 2, 2 + 1

Natural to represent program locations as terms and domain
elements as their values whose exact representation we don’t know

There are theoretical limitations as well
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Summary and Outlook

Summary

First-order formulas defined over a signature of typed symbols

Hierarchical OO type system with abstract and dynamic types

Quantification over variables, no “free” variables in formulas

Semantic domain like objects in a Java heap

First-order model assigns semantic value to terms and formulas

Semantic notions satisfiability and validity

Semantic evaluation is not feasible in practice

Infinite (uncountable) number of first-order models

Evaluation of quantified formula may involve infinitely many cases

Next goal: a syntactic calculus allowing mechanical validity checking
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