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Syntax

Formula/Program

s

Semantics
“valid”
Completeness,l, J, ‘rSoundness

Calculus
“Derivable”



Cannot express: let g be group with arbitrary number of elements I

No functions or relations with arguments

" Can express: finite function/relation table with indexed variables p;;

X Cannot express:
properties of function/relation on all arguments: “+" associative

Programs change value of their variables, e.g., via assignment, call, etc.
Propositional formulas look at one single interpretation at a time




o
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First-order signature ¥ = (PSym, FSym, «)
Predicate or Relation Symbols PSym = {p; | i € IN}
Function Symbols FSym = {f; | i € IN}
Typing function «, set of types 7

@ a(p) € T* for all p € PSym

e a(f) € T* x T for all f € FSym

VSym = {x; | i € IN} set of typed variables

@ In contrast to “standard” FOL, our symbols are typed
Necessary to model a typed programming language such as JAVA!

@ Allow any non-reserved name for symbols, not merely p3, fi7,...



@ Write T x; to declare variable x of type T
e Write p(Ty,..., T,); for a(p) = (T1,..., T;)
@ Write T f(T1,..., T,); for a(f) = ((T1,..., T+), T)

Similar convention as in JAVA, no overloading of symbols
Case r = 0 is allowed, then write p instead of p(), etc.




@ Write T x; to declare variable x of type T
e Write p(Ty,..., T,); for a(p) = (T1,..., T;)
@ Write T f(T1,..., T,); for a(f) = ((T1,..., T+), T)

Similar convention as in JAVA, no overloading of symbols
Case r = 0 is allowed, then write p instead of p(), etc.

Example
Variables boolean b; int i;
Predicates isEmpty(List); alertOn;

Functions int arrayLookup(int); java.lang.Object o;




We want to model the behavior of JAVA programs
Admissible types 7 form object-oriented type hierarchy




We want to model the behavior of JAVA programs
Admissible types 7 form object-oriented type hierarchy

@ 7 is finite set of types (not parameterized)

@ Given subtype relation c, assume 7 has all supertypes, i.e., T is
M-closed

@ Dynamic types 7y C 7, where T € 74
@ Abstract types 7, C 7, where | € 7,
e TyNT,=10

e TuUT, =T

@ IcTcT forall TeT




Example
Using UML notation J




Dynamic types are those with direct elements

Abstract types for abstract classes and interfaces

JAVA 1.5+ is M-closed

In JAVA primitive (value) and object types incomparable

1 is abstract and hence no object ever can have this type
L cannot occur in declaration of signature symbols

Each abstract type except L has a non-empty dynamic subtype
In JAVA T is chosen to have no direct elements

@ JAVA has infinitely many types: int[], int[1[],...
Restrict 7 to the finitely many types that occur in a given program



Dynamic types are those with direct elements

Abstract types for abstract classes and interfaces

JAVA 1.5+ is M-closed

In JAVA primitive (value) and object types incomparable

1 is abstract and hence no object ever can have this type
L cannot occur in declaration of signature symbols

Each abstract type except L has a non-empty dynamic subtype
In JAVA T is chosen to have no direct elements

@ JAVA has infinitely many types: int[], int[1[],...
Restrict 7 to the finitely many types that occur in a given program

Example (The Minimal Type Hierarchy)
T={L,T}
All signature symbols have same type T: drop type, untyped logic




e Equality symbol = & PSym declared as = (T, T)
Written infix: x =0

@ Type predicate symbol ET € PSym for each T € T
Declared as ET(T)
Written prefix: iEint — read “instance of"

@ Type cast symbol (T) € FSym for each T € T

Declared as T (T)(T)
Written prefix: (String)o — read ‘“cast o to String"




e Equality symbol = & PSym declared as = (T, T)
Written infix: x =0

@ Type predicate symbol ET € PSym for each T € T
Declared as ET(T)
Written prefix: iEint — read “instance of"

@ Type cast symbol (T) € FSym for each T € T

Declared as T (T)(T)
Written prefix: (String)o — read ‘“cast o to String"

So far, we have a type system and a signature — where is the logic? J




@ Think of first-order terms as expressions in a programming language
Built up from variables, constants, function symbols

@ First-order terms have no side effects (like PROMELA, unlike JAvVA)
o First-order terms have a type and must respect type hierarchy

e type of f(g(x)) is result type in declaration of function f
e in f(g(x)) the result type of g is subtype of argument type of f, etc.




@ Think of first-order terms as expressions in a programming language
Built up from variables, constants, function symbols
@ First-order terms have no side effects (like PROMELA, unlike JAvVA)

o First-order terms have a type and must respect type hierarchy

e type of f(g(x)) is result type in declaration of function f
e in f(g(x)) the result type of g is subtype of argument type of f, etc.

@ x is term of type T for variable declared as T x;
o f(ti,...,t,) is term of type T for

e function symbol declared as T f(Ty,..., T,); and
e terms t; of type T/CT; for 1 <j<r

@ There are no other terms (inductive definition)




Example
Signature: int i; short j; List 1; int f(int);
@ (i) has result type int and is contained in Term;,¢
@ £(j) has result type int (when shortCint)
e £(1) is ill-typed (when int, List incomparable)
@ f(i,1i) is not a term (doesn’t match declaration)

@ (int)j is term of type int

@ even (int)1 is term of type int (type cast always well-formed)




Example
Signature: int i; short j; List 1; int f(int);
@ (i) has result type int and is contained in Term;,¢
@ £(j) has result type int (when shortCint)
e £(1) is ill-typed (when int, List incomparable)
£(i,1) is not a term (doesn't match declaration)

(int) j is term of type int

even (int)1 is term of type int (type cast always well-formed)

If f is constant (r = 0) write f instead of f()
@ Use infix notation liberally, where appropriate:

declare int +(int, int); then write i+j, etc.
@ Use brackets to disambiguiate parsing:
(i+j)*i



p(ti,...,t) is atomic first-order formula for

@ predicate symbol declared as p(T1,..., T;); and
o terms t; of type T/CT;for 1 <i<r




p(ti,...,t) is atomic first-order formula for

@ predicate symbol declared as p(T1,..., T;); and
o terms t; of type T/CT;for 1 <i<r

Example
Signature: int i; short j; List 1; <(int, int);
@ i < i is an atomic first-order formula
@ i < j is an atomic first-order formula (when shortCint)
@ i < 1isill-typed (when int, List incomparable)
@ i=j and even i=1 are atomic first-order formulas
°

iEshort is an atomic first-order formula




@ Truth constants true, false and all first-order atomic formulas are
first-order formulas

@ If ¢ and ) are first-order formulas then
lo, (9 &) (6]¢) (¢ =) (¢ <> )
are also first-order formulas

o If T x is a variable declaration, ¢ a first-order formula,
then VT x; ¢ and 3 T x; ¢ are first-order formulas
Any occurrence of x in ¢ must be well-typed

@ VT x; ¢ called universally quantified formula

o 1T x; ¢ called existentially quantified formula



@ InVTx; ¢and IT x; ¢ call ¢ the scope of x bound by V/3

@ Variables bound in quantified formulas similar to
program locations declared as local variables/formal parameters

Example
@ Vint /; dint j; i < j is a first-order formula
o Vint j; dList /; i < [ is ill-typed
e Vint /; i < j is a first-order formula
if j is a constant compatible with int
o (Vint /; Vint j; i <j) | (Vint /; Vint j; i > j)
is a first-order formula




Text book SPIN KeY Java
Negation - ! ! !
Conjunction A && & &&
Disjunction Y l| | [l
Implication —, D —> - n/a
Equivalence — <> <> n/a

Universal Quantifier Vx; ¢ n/a \forallT x;¢ n/a
Existential Quantifier Ix; ¢ n/a \existsT x;¢ n/a
Value equality = == = ==



Text book SPIN KeY JAvVA
Negation - ! ! !
Conjunction A && & &&
Disjunction Y l| | [l
Implication —, D - - n/a
Equivalence — <> <> n/a

Universal Quantifier Vx; ¢ n/a \forallT x; ¢ n/a
Existential Quantifier Ix; ¢ n/a \existsT x;¢ n/a
Value equality = == = ==

For quantifiers we normally use textbook syntax and
suppress type information to ease readability

For propositional connectives we use KeY syntax
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@ In prop. logic, interpretation of variables with {T, F}
@ In first-order logic we must assign meaning to:

e variables bound in quantifiers
e constant and function symbols
e predicate symbols

@ Each variable or function value may denote a different object

@ Respect typing: int i, List 1 must denote different objects

@ A collection of typed universes of objects (akin to heap objects)

© A mapping from variables to objects
© A mapping from function arguments to function values

© The set of argument tuples where a predicate is true




© A collection of typed universes of objects

A non-empty set D of objects is a universe or domain
Each element of D has a fixed type given by 6 : D — Ty

@ Like heap objects and values in JAVA

@ Notation for the domain elements type-compatible with T € 7
DT ={deD|sd)cT}

@ For each dynamic type T € 74 there must be at least one domain
element type-compatible with it: DT £ ()



e D ={17, o}

@ §(17) = short, (o) = Object

e Then Dshort Dlnt {17} DObject _ {o}
DT =D ={17,0}, and D+ = {}




© A mapping from function arguments to function values

© The set of argument tuples where a predicate is true

Let D be a domain with typing function ¢
Let f be declared as T f(T1,..., T;);

Let p be declared as p(T1,..., T,);

Let Z(f) : DT x --- x DTr — DT

Let Z(p) C Dt x --- x DTr

Then M = (D, 4,Z) is a first-order model




Example
Signature: int i; short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

(i) = 17 . :
I() = 17 pmt  pInt | in 7(<)?
Z(obj) = o (2,2) F
: 2,17)| T
t ( 9
D™ | 7(f) 17,2)| F
13 g (17,17 | F

One of uncountably many possible first-order models!




e Equality symbol = declared as = (T, T)
Model is fixed as Z(=) = {(d,d) | d € D}
“Referential Equality” (holds if arguments refer to identical object)
Exercise: write down the predicate table for example domain

@ Type predicate symbol ET for any T, declared as ET(T)
I(eT)=DT"
Exercise: what is Z(EObject)?

@ Type cast symbol (T) for each T, declared as T (T)(T)

x if cast succeeds (0(x)=T)
d otherwise, for an arbitrary fixed d € DT

Z((T)(x) = {

Exercise: what is Z((int))(17)?
~ AndréPlatzer (CMU)  15-819M/08: Data, Code, Decisions 27/ 40




@ Domain elements are not just the terms representing them
o First-order formulas and terms have no access to domain
@ As in JAVA: identity and memory layout of values/objects hidden

@ Think of a first-order model as a "“heap” of first-order logic

Example

Signature: Object objl, obj2;
Domain: D = {o}

In this model, necessarily Z(obj1) = Z(obj2) = o

Effect similar to aliasing in JAVA with reference types




© A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

A variable assignment 3 maps variables to domain elements
It respects the variable type, i.e., if x has type T then 8(x) € DT

Let y be variable of type T, 3 variable assignment, d € DT

] B(x) ifx#
ﬂj(x)'_{d ifx:§




Given a first-order model M and a variable assignment (3
it is possible to evaluate first-order terms under M and (3

Evaluating an expression in a programming language
with respect to a given heap (M) and binding of local variables (3)

valp g : Term — D such that valy g(t) € DT for t € Termy:

@ valpg(x) = B(x) (recall that 3 respects typing)
o Va/M,g(f(tl, ce t'r)) = Z(f)(valM,g(tl), acog valM,ﬁ(t,))




Example

Signature: int i; short j; int f(int);

D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

int
-1 (P IE
)=y 17| 2 x| 17

o valp g(£(£(1))) ?
o valpp(x) ?
o valpg g((int)obj) ?




Example

Signature: int i; short j; int f(int);

D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

int
-1 (P IE
)=y 17| 2 x| 17

o valp p(£(£(1))) ? =17
o valpp(x) ?
o valpg g((int)obj) ?




Example

Signature: int i; short j; int f(int);

D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

int
-1 (P IE
)=y 17| 2 x| 17

o valp p(£(£(1))) ? =17
o valpp(x) ? =17
o valpg g((int)obj) ?




Example

Signature: int i; short j; int f(int);

D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

int
-1 (P IE
)=y 17| 2 x| 17

o valp p(£(£(1))) ? =17
o valpp(x) ? =17
e valpg g((int)obj) ? =2, say




Formulas are true or false
A validity relation is more convenient than a function

M, B | ¢ for ¢ € For “M, 3 models ¢"

o M, ': p(tl, ce t,) iff (Va/M”g(tl),. cy valMﬁ(t,)) S I(p)
oM BEG&Y ff MBEGandM, B¢

@ ...as in propositional logic
e MBEVYT X, ¢ iff M,B¢=¢foralldeD’
e M, 3T x; ¢ iff M,B9 = ¢ for at least one d € DT




Example

Signature: short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

I(j) =17 Dint % Dil‘lt in I(<)?
pint | 7(f) (2,17) T
2] 2 (17,2) F
17| 2 (17,17) F

o M, B f(j)<j?
e M, = Jint x; f(x) =x7?
e M, = V0Object ol; V0Object 02; ol =02 ?




) (¢ is satisfiable)
Eo¢ (¢is truein M)
¢ iff foral M: ME¢ (¢isvalid)

E
Eo¢ iff forallg: M,
=

Closed formulas that are satisfiable are also true: one top-level notion J




) (¢ is satisfiable)
Eo¢ (¢is truein M)
¢ iff foral M: ME¢ (¢isvalid)

=
Eo¢ iff forallg: M,
-

Closed formulas that are satisfiable are also true: one top-level notion J

Example
e f(j) <jis true in M
e Jint x; /i = x is valid

e Jint x; !(x = x) is not satisfiable




o Untyped Logic
o
o



Most logic textbooks introduce untyped logic J

@ Minimal Type Hierarchy: 7 = {L, T}
@ D ="D' = (: only one populated type T, drop all typing info

@ Signature merely specifies arity of functions and predicates:
Write f/1, < /2, i/0, etc.

@ Untyped logic is suitable whenever we model a uniform domain

@ Typical applications: pure mathematics such as algebra




Example (Axiomatization of a group in first-order logic)

Signature X : FSym = {0/2, e/0}, PSym = {= /2}
Let G be the following formulas:

Left identity Vx; eox = x
Left inverse Vx;3dy; yox=e
Associativity Vx; Vy; Vz; (xoy)oz=xo0(yoz)

Let ¢ be ¥ g-formula.
Whenever = G —> ¢, then ¢ is a theorem of group theory




© Modeling with FOL
o
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Example (At least two elements)
Ix; Iy x =)
How to do this without built-in equality?
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Example (Strict partial order)

PSym = {< /2}

Irreflexivity  Vx; I(x < x)

Asymmetry Vx; Vy; (x <y = Iy < x))

Transitivity Vx; Vy; Vz;
(x<y&y<z—>x<2z)
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First-Order

Formulas

Example (All models have infinite domain)

Which 7 Signature and axioms of irreflexive order plus

<

Existence Successor Vx; dy; x < y

First-Order
Models
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First-Order
Models

Example (Abstract data types)

FSym = { Stack push(int, Stack);
int pop(Stack);
Stack nil; }

Vint i; V Stack s; pop(push(i,s)) =s




Why not take terms and properties at their “face value”?

A first-order model where

@ Domain D are all variable-free (i.e., ground) terms
@ Each domain element is represented as a term

@ Interpretation of function symbols is identity:
Z(f)(dh,...,dr) = f(di,...,d)




Why not take terms and properties at their “face value”?

A first-order model where
@ Domain D are all variable-free (i.e., ground) terms
@ Each domain element is represented as a term

@ Interpretation of function symbols is identity:
Z(f)(dh,...,dr) = f(di,...,d)

@ Too many different domain elements: 1+2, 2 +1

@ Natural to represent program locations as terms and domain
elements as their values whose exact representation we don’'t know

@ There are theoretical limitations as well




o
o
@ Summary



o First-order formulas defined over a signature of typed symbols

@ Hierarchical OO type system with abstract and dynamic types
@ Quantification over variables, no “free” variables in formulas

@ Semantic domain like objects in a JAVA heap

@ First-order model assigns semantic value to terms and formulas

@ Semantic notions satisfiability and validity




o First-order formulas defined over a signature of typed symbols
@ Hierarchical OO type system with abstract and dynamic types
@ Quantification over variables, no “free” variables in formulas

@ Semantic domain like objects in a JAVA heap

@ First-order model assigns semantic value to terms and formulas

@ Semantic notions satisfiability and validity

Infinite (uncountable) number of first-order models

Evaluation of quantified formula may involve infinitely many cases

Next goal: a syntactic calculus allowing mechanical validity checking
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