André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

}

throw new NoSuchElementException();



© Formal Modeling

e Propositional Logic
@ Syntax
@ Semantics
@ Sequent Calculus
e DPLL
@ Expressiveness

e Temporal Logic



© Formal Modeling



Real Formalisation Formal

World Model




Formal

Languages

Real
World

Formal

Semantics



Formal

Languages

Real
World

Interpretation

Formal

Semantics



Propositional

Logic

Real
World

Interpretation

Valuation



Promela +

Temporal Logic

Real
World

Interpretation

All Runs o +

Valuation in o




Real
World

oy

Semantics

g

Temporal Logic
Promela

2

All Runs o =
Transition System




Real
World

oy

Semantics

Temporal Logic
Promela

2

All Runs o =
Transition System

How to do

proving?




Transition
System



Translation

Transition
System



Translation

of Negation

Semantics

>

¢

Transition
System

Product
accepts

no run?




Syntax

Formula/Program

s

Semantics
“valid”

2

Calculus
“Derivable”




Syntax

Formula/Program

s

Semantics
“valid”
~l¢ TSoundness

Calculus
“Derivable”




Syntax

Formula/Program

s

Semantics
“valid”
Completeness,l, J, ‘rSoundness

Calculus
“Derivable”



e Propositional Logic
@ Syntax
@ Semantics
@ Sequent Calculus
e DPLL
@ Expressiveness



Propositional

Formulas

=

Magping
Var - KT, F}

2 1

Sequent Calculus

SAT Solver




Propositional

Formulas

=

Magping
Var - KT, F}

2 1

Sequent Calculus

SAT Solver




A set of Propositional Variables P (with typical elements p, q,r,...)




A set of Propositional Variables P (with typical elements p, q,r,...)

true false & | ! — <>




A set of Propositional Variables P (with typical elements p, q,r,...)

true false & | ! — <>

@ Truth constants true, false and variables P are formulas

@ If ¢ and 4 are formulas then

Lo, (¢ &), (6] %), (¢ =) (¢ <> )
are also formulas

@ There are no other formulas (inductive definition)




A set of Propositional Variables P (with typical elements p, q,r,...)

true false & | | = <>

@ Truth constants true, false and variables P are formulas

@ If ¢ and 4 are formulas then

g, (9 &) (01¢). (¢ =>9) (¢ <> )

are also formulas

@ There are no other formulas (inductive definition)




Negation = !
Conjunction A & &&
Disjunction v | I
Implication —, D = —
Equivalence - <> <>



Negation = ! !
Conjunction A & &&
Disjunction v | I
Implication —, D = —
Equivalence - <> <>

Today, we use KeY notation.
Be flexible during the course!



Propositional
Formulas

B 2

Magping
Var - KT, F}

+ =1

Sequent Calculus

SAT Solver




Propositional
Formulas

B 2

Magping
Var - KT, F}

+ =1

Sequent Calculus

SAT Solver




Assigns a truth value to each propositional variable

Z:P—A{T,F}




Assigns a truth value to each propositional variable

Z:P—A{T,F}

valz: Continuation of Z on Fory

valy : Forp, — {T,F}

valz(pi) = Z(pi)
valz(true) = T
valz(false) = F

(cont’d next page)




valz(16) ={ T if vak(9) = F

F  otherwise

T if val(¢) = T and valr(y) = T
F  otherwise

| T ifvalt(¢)=Torval(yp) =T
vaiz(¢ | ¥) = { F  otherwise

T if valz(¢) = F or valz(¢) =T
F otherwise

F otherwise

valz(¢ & ¥) = {

valz(¢p —> ) = {

valz(¢ <> ) = {




Example (Formula) }

p—=> (g = p)




Example (Formula)

p = (@ = p)

Example (Interpretation)

One of four different ones on P = {p, q} that are possible:
I(p)=T

I(q) = F




Example (Formula)

p = (@ = p)

Example (Interpretation)

One of four different ones on P = {p, q} that are possible:
I(p)=T

I(q) = F

Example
valz(qg = p) =




Example (Formula)

p = (@ = p)

Example (Interpretation)

One of four different ones on P = {p, q} that are possible:
I(p)=T

I(q) = F

Example
valz(g —> p) = T




Example (Formula)

p = (@ = p)

Example (Interpretation)

One of four different ones on P = {p, q} that are possible:
I(p)=T

I(q) = F

Example

valz(g —> p) = T
valz(p — (g = p))




Example (Formula)

p = (@ = p)

Example (Interpretation)

One of four different ones on P = {p, q} that are possible:
I(p)=T

I(q) = F

Example

valz(g —> p) = T
valz(p — (g = p))

- T




Let ¢ € Fory, I C Fony

¢ is valid in Z (write: Z |= ¢) iff valz(¢) =T

¢ follows from I (write: ' = ¢) iff for all interpretations Z:

If Z =14 for all ¢ € T then also Z = ¢




Let ¢ € Fory, I C Fony

¢ is valid in Z (write: Z |= ¢) iff valz(¢) = T

¢ follows from I (write: ' |= ¢) iff for all interpretations Z:

If Z =) for all ¢» €T then also Z = ¢

A formula is satisfiable if it is valid in some interpretation.
If ¢ is valid in every interpretation, i.e

DE¢ (short: = @)

then ¢ is called logically valid.




Example (Formula)
p—=> (g > p) J




Example (Formula)
p—=> (g > p) J

Is this formula valid?

Fp—> (g > p)?



p& (('p) | a) ]

Satisfiable?



p& (('p) | a) ]

Satisfiable? v



p&(('p) | q) ]

Satisfiable? v
Satisfying Interpretation?



p&(('p) | q) ]
Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T



p& (('p) | a) ]
Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T

Other Satisfying Interpretations?



p& (('p) | a) ]
Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T

Other Satisfying Interpretations? X



p& (('p) | a) ]
Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T

Other Satisfying Interpretations? X
Therefore, also not valid!



p& (('p) | a) ]
Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T

Other Satisfying Interpretations? X
Therefore, also not valid!

p&(('P) | a)Fqlr )|

Does it hold?



p& (('p) | a) ]
Satisfiable? v
Satisfying Interpretation? I(p)=T,Z(q) =T

Other Satisfying Interpretations? X
Therefore, also not valid!

p&(('P) | a)Fqlr |

Does it hold? Yes. Why?



Propositional

Formulas

B 2

Magping
Var - KT, F}
+ E1

Sequent
Calculus




Propositional

Formulas

B 2

Magping
Var - KT, F}
+ E1

Sequent
Calculus




Establish |= ¢ by finite, syntactic transformation of ¢ J




Establish |= ¢ by finite, syntactic transformation of ¢ J

A set of (decidable) syntactic transformation rules R defining a relation
F C Fory such that

@ + ¢ implies |= ¢: Soundness (required)
@ = ¢ implies - ¢: Completeness (desirable)




Establish |= ¢ by finite, syntactic transformation of ¢ J

A set of (decidable) syntactic transformation rules R defining a relation
F C Fory such that

@ + ¢ implies |= ¢: Soundness (required)
@ = ¢ implies - ¢: Completeness (desirable)

Sequent Calculus based on notion of sequent

¢1,---71/)m == ¢17-~~;¢n
—_———— —_——
Antecedent Succedent

has same semantics as

(¢1&&¢m) e (¢1||¢n)
{wla"'awm} ): ¢1”¢n
~ AndréPlatzer (CMU)  15-819M/02: Data, Code, Decisions | 15/38



1/)1,...,1,Dm = ¢1,...,¢,-, J

Consider antecedent/succedent as sets of formulas, possibly empty



¢1,'--,¢m = ¢1,~'-7¢n J

Consider antecedent/succedent as sets of formulas, possibly empty

¢, 1, ... match formulas, I, A, ... match sets of formulas
Characterize infinitely many sequents with a single schematic sequent

r = A o¢&v

Matches any sequent with occurrence of conjunction in succedent

Call ¢ & 1 main formula and I, A side formulas of sequent

Any sequent of the form ;¢ = A, ¢ is logically valid: axiom



Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses

A

M= - T,=A

f—= A
——

Conclusion

RuleName



Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses
fi=na - T =A
RuleName

f—= A
———
Conclusion

Example

r= ¢ A =4, A
andRight ¢ i

N=¢ & ¥, A




Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses
fi=na - T =A
RuleName

f—= A
———
Conclusion

Example

r= ¢ A =4, A
andRight ¢ i

N=¢ & ¥, A

Sound rule (essential): E (M1 =A01& - &I, = A,) > (I = A)



Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses

A

Mhi=n0 - I,=A

f—= A
——

Conclusion

RuleName

Example
= ¢, A =y, A
= ¢ & ¥, A

andRight

Sound rule (essential): E (M1 =A01& - &I, = A,) > (I = A)
Complete rule (desirable):E= (I = A) > (M1 = A1 & - & T, = A,)

Admissible to have no premisses =iff conclusion is valid, eﬁ axiomi



main | left side (antecedent) | right side (succedent)
. M= o¢,A Moo= A
no _ _
Nlg= A Fr=19A




main | left side (antecedent) right side (succedent)
. M= o¢,A Moo= A
no _ _
Nle= A r=1¢A
d Mo v=A = ¢,A =y, A
an
Mo & y=A N=¢ & y,A




main | left side (antecedent) right side (succedent)
. M= o¢,A Moo= A
no _ _
Nlg= A Fr=19A
d Mo v=A = ¢,A =y, A
an
Mo & y=A N=¢ & ¢y, A
M= A My=A N=¢, y,A
or
Noly=A =9¢|¢,A




right side (succedent)

main | left side (antecedent)
. M= o¢,A Moo= A
"l Tis=na =164
d Mo v=A = ¢,A =y, A
an
Mo & y=A N=¢ & ¢y, A
M= A My=A N=¢, y,A
or
Noly=A =9¢|¢,A
. M= ¢,A My=A Moo=y A
im
P Mé—v—A = ¢—> 0,0




main | left side (antecedent) right side (succedent)
¢ = ¢,A Moo= A
ne Mlo— A = 1¢ A
d Mo v=A = ¢,A =y, A
an
e &y=A = ¢ & 9, A
M= A My=A N=¢, y,A
or
Mo |v=A r=¢|v,A
. M= ¢,A My=A Moo=y A
im
P Mé—v—A = ¢—> 0,0
close ————— true —————— false —————
Moo= ¢,A [ = true, A I, false = A



Justify rules by applying semantic definitions J




Justify rules by applying semantic definitions J

=¢,9,A
Fr=o¢|4,A

Follows directly from semantics of sequents

orRight



Justify rules by applying semantic definitions J

=¢,9,A
r=o9¢lvA

Follows directly from semantics of sequents

orRight

N=¢,A r=4,A
N=¢ & y¥,A

r>@&v)y|A iff T—=>¢|A and T—=>9|A
Distributivity of & over | and —

andRight




Goal to prove: G = ¥1,...,.Vm = P1,...,0n

@ find rule R whose conclusion matches G
@ instantiate R such that conclusion identical to G
@ recursively find proofs for resulting premisses Gy, ..., G,
@ tree structure with goal as root
@ close proof branch when rule without premiss encountered
Proof
[BS Proof Tree
equiv_right
@ [§5 Case 1
@ [BF Case 2
imp_right
replace_known _left
concrete_not_1
concrete_impl_3
L o antec
In KeY tool proof displayed as a tree @ Flosed soal




= (p& (p—>4q)) >gq



p&(p—>q)=gq

= (p& (p—>4q)) >gq



p: (p—=>4q)=gq
p&(p—>q)=gq
= (p& (p—>4q)) >gq




pP=>q,p P, q=>q
p: (p—=>q)=q
p& (p—=>q)=gq

= (p&(p—>4q)—>gq




k k
CLOSE CLOSE
p=>4q,p P, 9 =4

p: (p—=>4q)=gq
p&(p—>q)=gq
= (p& (p—>4q)) =>gq




k k
CLOSE CLOSE
p=>4q,p P, 9 =4

p: (p—=>4q)=gq
p&(p—>q)=gq
= (p& (p—>4q)) =>gq

A proof is closed iff all its branches are closed

Demo
Examples/prop.key



Basis for fast SAT solving in propositional logic J

refute (S):
while false ¢ S do
if 8S=0 then return sat
if S does not contain unit clause then
P := choose variable
/* split on P %/
refute (S with P:=false);
refute (S with P:=true);
else
K := choose unit clause from S
/* propagate K */
drop all clauses containing K
drop complement of K from all clauses
end if
end while
return unsat



c
AlB|
!A|g|!D
|
iﬁ\\llcw
A|lC

B



c
AlB|
!Ayguo
|
iﬁ\\llcw
A|lC

B



Al C
LA|1D
1A| C
IA|1C|D
AllC

propagate(! B)

Al C
lA|1D
lA| C
IA|1C|D
AllC



AlC

AlC
IA[1D |A||ID
' H H
iA||C propagate(! B) 'A|C
LA[1C| D Al
AllC ' :
AlC
IA| 1D
TA| C propagate(C)
IA| 1C| D
A|lC

refute(with A=false)
AlC
1A|1D
1A| C
IA|1C|D
AllC




AlC

Al C
IA[1D |A||ID
' . H
iA||C propagate(! B) 'A|C
LA|1C|D I
AllC :
A|C
IA| 1D
TA| C propagate(C)
IA|IC|D
AllC

refute(with A=false)
AlC
1A|1D
1A| C
IA|1C|D
AllC




AlC

AlC
!A|!CD
1A

A ropagate(! B) e

TA| C A

TA|!IC |

AlIC

- propagate(C)

C

1C|D

AlC
A[1D
1A |
lA|1C| D
Al lC




AlC

IA[1D |A|C|
Al C IA[1D

: propagate(! B) 'A| C
IA|IC| D alicio
AllC : :

'D D

C propagate(C) C

1C|D IC|D

refute(with Ai=false)
Al C
1A|1D
1A| C
IA[1C|D
AllC




AlC

1A|1D |A|C|

Al C 1A|1D

. propagate(! B) 'A| C

IA|1C|D AI1CID
AllC | |i

I'D I'D

C propagate(C) propagate(! D) D
1C|D D

refute(with Ai=false)
Al C
lA[1D
1A| C
IA[1C|D
AllC




AlC

1A|1D AlC

Al C 1A|1D

) propagate(! B) 'A| C

IA|1C|D AI1CID

AllC | |i

I'D I'D

C propagate(C) propagate(! D)  unsat! empty clause
IC|D D

Al C
lA|1D
1A| C
IA|1C|D

AllC




AlC

1A|1D AlC

Al C 1A|1D

) propagate(! B) 'A| C

IA|1C|D AI1CID

AllC | |i

I'D I'D

C propagate(C) propagate(! D)  unsat! empty clause
IC|D D

AlC
IA[1D
1A| C
IA[IC|D

AllC




AlC

1A|1D |A| Cl

Al C 1A|1D

) propagate(! B) 'A| C

IA|1C|D AI1CID

AllC | |i

I'D I'D

C propagate(C) propagate(! D)  unsat! empty clause
IC|D D

C

propagate(C) fC




AlC
IA[1D
1A| C

|
lA[1C|D propagate(! B)

AllC

P

I'D

C propagate(C)
IC|D

I'D

D

AlC
lA[1D
1A| C
lA[IC|D

propagate(! D)  unsat! empty clause

C

propagate(C) unsat! empty clause




Let pjj denote p(i) = j. p is a permutation on N is expressible . ..
Groups, Latin squares, Sudoku, ...
Even finite numbers (e.g., bitwise encoding)




Cannot express: let g be group with arbitrary number of elements

Can express: finite function/relation table pj;
Cannot express: properties of function/relation on all arguments, e.g., +
is associative

Programs change value of their variables, e.g., via assignment, call, etc.
Propositional formulas look at one single interpretation at a time




First-order

Propositional

Temporal
Logic




First-order

+state change +functions

Propositional Dynamic

Logic

Temporal
Logic



First-order

Propositional +state change +functions Dynamic

RS Logic



First-order

+state change +functions

o BT T TN
** S

Propositional




e Temporal Logic



[ ame,_update




8\ =T (s a=p \/m
TT FT

7N N2

Q//

@ Each state has its own propositional interpretation!
@ Computations, or runs, are infinite paths through states
@ Infinitely many different runs

@ How to express (for example) that either p or g changes its value
infinitely often in each run?



An extension of propositional logic that allows to
specify properties of sets of runs




An extension of propositional logic that allows to
specify properties of sets of runs

Based on propositional signature and syntax.

Extension with three connectives:
Always If ¢ is a formula then so is []¢
Sometimes If ¢ is a formula then so is <>¢
Until If ¢ and % are formulas then so is ¢ U1

text book SPIN

Always O []
Sometimes O <>
Until Uu U




Arunoisan infinte chain of states

Z; propositional interpretation of variables in j-th state
Write more compactly sps; s> s3. ..




Arunoisan infinte chain of states

Z; propositional interpretation of variables in j-th state
Write more compactly sps; s> s3. ..

If o = spsi..., then o|; denotes the suffix s;s;41... of 0.




e e @
LA P

Validity of temporal formula depends on runs ¢ = sy s3 . . . for which the

formula may, or may not, hold:
okEp iff Zo(p)=T, for pe P.




e e @
R

Validity of temporal formula depends on runs ¢ = sy s3 . . . for which the

formula may, or may not, hold:
okEp iff Zo(p)=T, for pe P.




/\/\ﬁ(\m

Validity of temporal formula depends on runs ¢ = sy s3 . . . for which the
formula may, or may not, hold:

okEp ifft Zo(p) =T, for pe P.

oE1¢ iff noto =¢ (write o [~ ¢)

—|




 Semantics of Temporal Logic
mﬁ(\\

() o,
SZENS 7 Nz

P 'p
Q/ p&q

—|

Validity of temporal formula depends on runs ¢ = sy s3 . . . for which the
formula may, or may not, hold:

okEp ifft Zo(p) =T, for pe P.

oE1¢ iff noto =¢ (write o [~ ¢)

cEo&Y iff oE¢ando =y




 Semantics of Temporal Logic
mﬁ(\\

() o,
SZENS 7 Nz

P 'p
Q/ p&q

—|

Validity of temporal formula depends on runs ¢ = sy s3 . . . for which the
formula may, or may not, hold:

okEp ifft Zo(p) =T, for pe P.

oE1¢ iff noto =¢ (write o [~ ¢)

cEo&Y iff oE¢ando =y

kGl iff olEdoraEy

cEd—=>v iff olEgporoEY




oo eo

Given arun 0 = 5051, . ..




Comstmarelgd SR
A

Given arun 0 = 5951,5) . ..

ck=[l¢ iff olxl=dforallk>0




R L

Given arun 0 = 5951,5) . ..

ocE[l¢  iff ol ¢ forall k>0
olE<>¢ iff olk | ¢ for some k >0




Smisdimeales
ooy

Given arun 0 = 5951,5) . ..

o=[]6  iff olkl=oforall k>0
olE<>¢ iff olk = ¢ for some k >0
o= ¢Uy iff o|k =1 for some k >0, and ol |= ¢ for all 0<j<k




Always-formulas called safety property: something bad never happens

Let mutex be variable that is true when two process do not access a
critical resource at the same time

[]mutex expresses that simultaneous access never happens




Always-formulas called safety property: something bad never happens

Let mutex be variable that is true when two process do not access a
critical resource at the same time

[]mutex expresses that simultaneous access never happens

Sometimes-formulas called liveness property: something good happens
eventually

Let s be variable that is true when a process delivers a service

<> s expresses that service is eventually provided




[l<>¢




[[<>¢

During a run the formulas ¢ will become true infinitely often.




AInfinitely Often
[[<>¢

During a run the formulas ¢ will become true infinitely often.

<>[l¢




AInfinitely Often
[[<>¢

During a run the formulas ¢ will become true infinitely often.

<>[l¢

During a run the formulas ¢ will become eventually stay true indefinitely.




¢ is valid, write = ¢, iff ¢ is valid in all runs 0 = sp s .. ..

Recall that each run sy s; ... essentially is an infinite sequence of
interpretations Zo 7y . . ..



<>[Jo |

Valid?



<>[Jo |

Valid?
No, there is a run in where it is not valid:



<>[1o |
Valid?
No, there is a run in where it is not valid:
(Yo, ', 1e,...)



<>[1o |
Valid?
No, there is a run in where it is not valid:
(Yo, ', 1e,...)

Valid in some run?



<>[1o |
Valid?
No, there is a run in where it is not valid:
(Yo, ', 1e,...)
Valid in some run?
Yes: (¢, ¢, ¢,...)



<>[ls |
Valid?
No, there is a run in where it is not valid:
(16,16, 16,...)
Valid in some run?
Yes: (¢, ¢, ¢,...)
[lp —> ¢ ([]¢) <= (<>19) ]

Both are valid!



<>[ls [
Valid?
No, there is a run in where it is not valid:
(16,16, 16,...)
Valid in some run?
Yes: (¢, ¢, ¢,...)
[lp —> ¢ ([]¢) <= (<>19) ]

Both are valid!

@ [] is reflexive

@ [] and <> are dual connectives



A Transition System 7 = (S, Ini,§,Z) is given by a set of states S, a
non-empty subset /ni C S of initial states, and a transition relation

6 €S xS, and 7 labeling each state s € S with a propositional
interpretation Zs.

Arunof T isaisarun o =s95;..., with s; € S, such that sg € Ini and
(siysi+1) € 0 for all i.




Validity of temporal formula is extended to transition systems in the
following way:

Given a transition systems 7 = (S, Ini,0,Z), a temporal formula ¢ is
valid in 7 (write 7 |= ¢) iff 0 = ¢ for all runs o of 7.




KeY W. Ahrendt: Using KeY. In: B. Beckert, R. Hahnle, and
P. Schmitt, editors. Verification of Object-Oriented Software:

The KeY Approach, Chapter 10, only pp 409-424, vol 4334 of
LNCS. Springer, 2006.

Ben-Ari Mordechai Ben-Ari: Principles of the Spin Model Checker,
Springer, 2008(!). Section 5.2.1
(PROMELA examples briefly)



	Formal Modeling
	Propositional Logic
	Syntax
	Semantics
	Sequent Calculus
	DPLL
	Expressiveness

	Temporal Logic

