15-819M: Data, Code, Decisions

02: Formal Modeling with Propositional Logic

André Platzer

aplatzer@cs.cmu.edu Carnegie Mellon University, Pittsburgh, PA

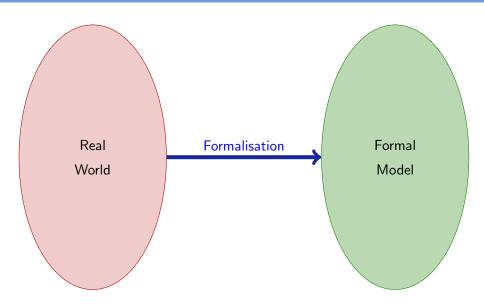
Outline

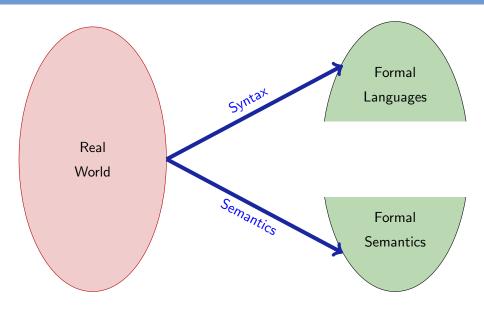
- Formal Modeling
- 2 Propositional Logic
 - Syntax
 - Semantics
 - Sequent Calculus
 - DPLL
 - Expressiveness
- Temporal Logic

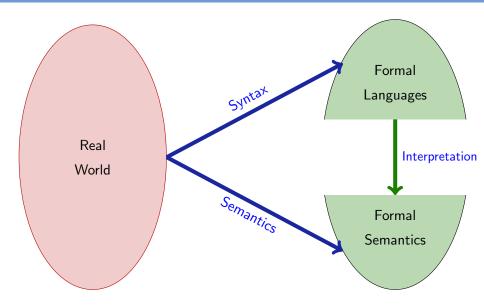
Outline

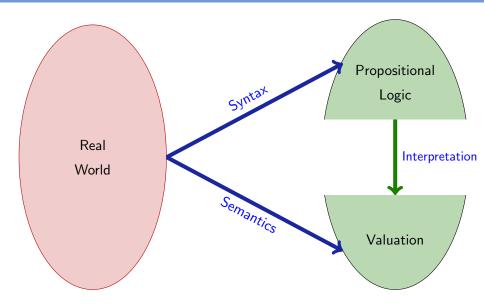
- Formal Modeling
- Propositional Logic
 - Syntax
 - Semantics
 - Sequent Calculus
 - DPLL
 - Expressiveness
- 3 Temporal Logic

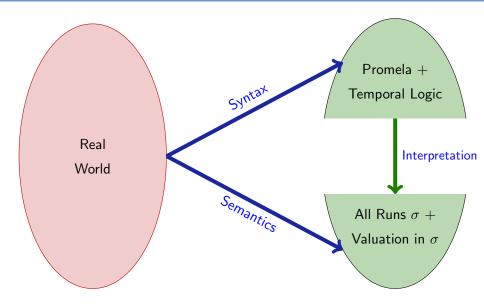
Formalisation

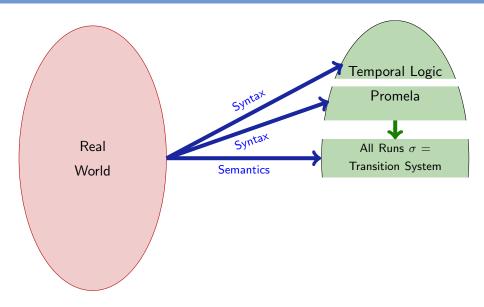




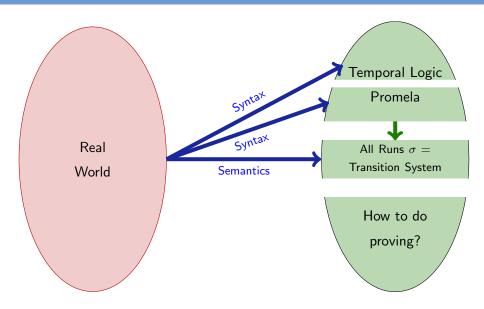




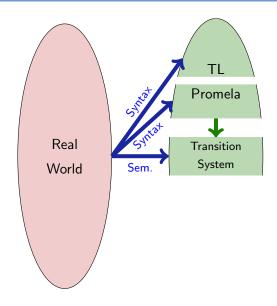




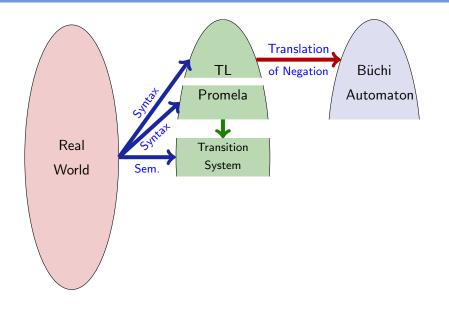
Formalisation: Syntax, Semantics, Proving



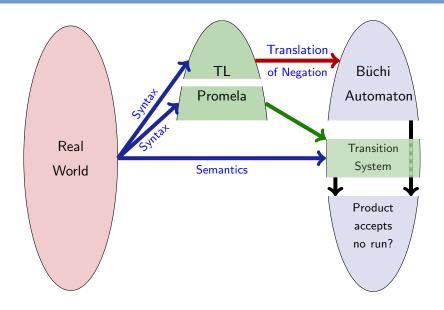
Formal Verification: Model Checking



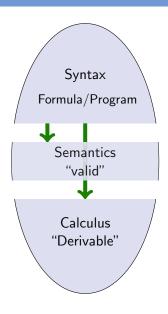
Formal Verification: Model Checking



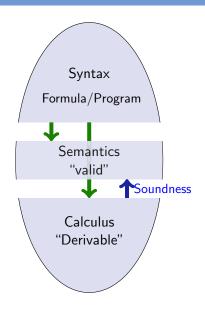
Formal Verification: Model Checking



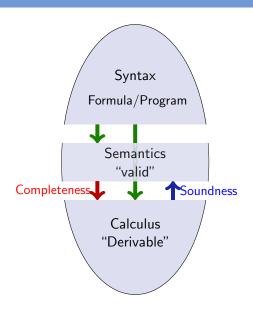
Syntax, Semantics, Calculus



Syntax, Semantics, Calculus



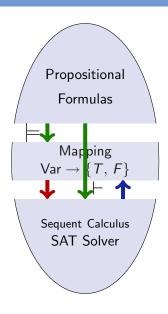
Syntax, Semantics, Calculus



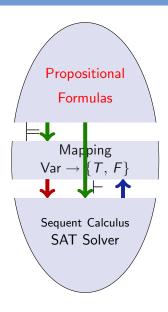
Outline

- Formal Modeling
- 2 Propositional Logic
 - Syntax
 - Semantics
 - Sequent Calculus
 - DPLL
 - Expressiveness
- 3 Temporal Logic

Propositional Logic



Propositional Logic: Syntax



Definition (Signature)

A set of Propositional Variables \mathcal{P} (with typical elements p, q, r, \ldots)

Definition (Signature)

A set of Propositional Variables \mathcal{P} (with typical elements p, q, r, \ldots)

Propositional Connectives

true false & $| \cdot | \cdot -> <->$

Definition (Signature)

A set of Propositional Variables \mathcal{P} (with typical elements p, q, r, \ldots)

Propositional Connectives

true false & $| \cdot \cdot - \rangle$

Definition (Propositional Formulas For₀)

- ullet Truth constants true, false and variables ${\cal P}$ are formulas
- ullet If ϕ and ψ are formulas then

$$!\,\phi,\quad (\phi\ \&\ \psi),\quad (\phi\ |\ \psi),\quad (\phi\ -\!\!\!>\ \psi),\quad (\phi\ <\!\!\!-\!\!\!>\ \psi)$$

are also formulas

• There are no other formulas (inductive definition)

Definition (Signature)

A set of Propositional Variables \mathcal{P} (with typical elements p, q, r, ...)

Propositional Connectives (KeY notation)

true false & $| \cdot \cdot - \rangle$

Definition (Propositional Formulas For₀)

- ullet Truth constants true, false and variables ${\cal P}$ are formulas
- ullet If ϕ and ψ are formulas then

$$!\,\phi,\quad (\phi\ \&\ \psi),\quad (\phi\ |\ \psi),\quad (\phi\ -\!\!\!>\ \psi),\quad (\phi\ <\!\!\!-\!\!\!>\ \psi)$$

are also formulas

• There are no other formulas (inductive definition)

Remark on Concrete Syntax

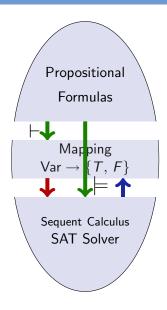
	Text book	KeY	SPIN
Negation	7	!	!
Conjunction	\wedge	&	&&
Disjunction	V		
Implication	\rightarrow , \supset	->	->
Equivalence	\leftrightarrow	<->	<->

Remark on Concrete Syntax

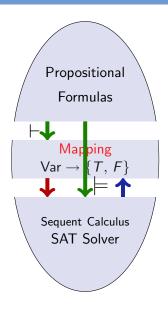
	Text book	KeY	SPIN
Negation	7	!	!
Conjunction	\wedge	&	&&
Disjunction	V		
Implication	ightarrow, $ ightarrow$	->	->
Equivalence	\longleftrightarrow	<->	<->

Today, we use KeY notation. Be flexible during the course!

Propositional Logic: Semantics



Propositional Logic: Semantics



Semantics of Propositional Logic

Definition (Interpretation \mathcal{I})

Assigns a truth value to each propositional variable

$$\mathcal{I}:\mathcal{P}\to\{T,F\}$$

Semantics of Propositional Logic

Definition (Interpretation \mathcal{I})

Assigns a truth value to each propositional variable

$$\mathcal{I}: \mathcal{P} \to \{T, F\}$$

Definition (Valuation function)

 $val_{\mathcal{I}}$: Continuation of \mathcal{I} on For_0

$$val_{\mathcal{I}}: For_0 \rightarrow \{T, F\}$$

$$val_{\mathcal{I}}(p_i) = \mathcal{I}(p_i)$$

 $val_{\mathcal{I}}(\text{true}) = T$
 $val_{\mathcal{I}}(\text{false}) = F$

(cont'd next page)

Semantics of Propositional Logic

Definition (Valuation function . . .)

$$val_{\mathcal{I}}(!\,\phi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = F \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \& \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = T \text{ and } val_{\mathcal{I}}(\psi) = T \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \mid \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = T \text{ or } val_{\mathcal{I}}(\psi) = T \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \rightarrow \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = F \text{ or } val_{\mathcal{I}}(\psi) = T \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \rightarrow \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = val_{\mathcal{I}}(\psi) \\ F & \text{otherwise} \end{cases}$$

Example (Formula)

$$p \rightarrow (q \rightarrow p)$$

Example (Formula)

$$p \rightarrow (q \rightarrow p)$$

Example (Interpretation)

One of four different ones on $\mathcal{P} = \{p, q\}$ that are possible:

$$\mathcal{I}(p) = T$$

$$\mathcal{I}(q) = F$$

Example (Formula)

$$p \rightarrow (q \rightarrow p)$$

Example (Interpretation)

One of four different ones on $\mathcal{P} = \{p,q\}$ that are possible:

$$\mathcal{I}(p) = T$$

$$\mathcal{I}(q) = F$$

$$val_{\mathcal{I}}(q \rightarrow p) =$$

Example (Formula)

$$p \rightarrow (q \rightarrow p)$$

Example (Interpretation)

One of four different ones on $\mathcal{P} = \{p,q\}$ that are possible:

$$\mathcal{I}(p) = T$$

$$\mathcal{I}(q) = F$$

$$val_{\mathcal{I}}(q \rightarrow p) = T$$

Example (Formula)

$$p \rightarrow (q \rightarrow p)$$

Example (Interpretation)

One of four different ones on $\mathcal{P} = \{p,q\}$ that are possible:

$$\mathcal{I}(p) = T$$

$$\mathcal{I}(q) = F$$

$$val_{\mathcal{I}}(q \rightarrow p) = T$$

 $val_{\mathcal{I}}(p \rightarrow (q \rightarrow p)) =$

Example (Formula)

$$p \rightarrow (q \rightarrow p)$$

Example (Interpretation)

One of four different ones on $\mathcal{P} = \{p,q\}$ that are possible:

$$\mathcal{I}(p) = T$$

$$\mathcal{I}(q) = F$$

$$val_{\mathcal{I}}(q \rightarrow p) = T$$

 $val_{\mathcal{I}}(p \rightarrow (q \rightarrow p)) = T$

Semantic Notions of Propositional Logic

Let $\phi \in For_0$, $\Gamma \subset For_0$

Definition (Validity and Consequence Relation, overloading \models)

- ϕ is valid in \mathcal{I} (write: $\mathcal{I} \models \phi$) iff $val_{\mathcal{I}}(\phi) = T$
- ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} :

If
$$\mathcal{I} \models \psi$$
 for all $\psi \in \Gamma$ then also $\mathcal{I} \models \phi$

Semantic Notions of Propositional Logic

Let $\phi \in \mathit{For}_0$, $\Gamma \subset \mathit{For}_0$

Definition (Validity and Consequence Relation, overloading \models)

- ϕ is valid in \mathcal{I} (write: $\mathcal{I} \models \phi$) iff $val_{\mathcal{I}}(\phi) = T$
- ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} :

If
$$\mathcal{I} \models \psi$$
 for all $\psi \in \Gamma$ then also $\mathcal{I} \models \phi$

Definition (Satisfiability, Validity)

A formula is satisfiable if it is valid in some interpretation.

If ϕ is valid in *every* interpretation, i.e

$$\emptyset \models \phi \quad (\mathsf{short} : \models \phi)$$

then ϕ is called logically valid.

Example (Formula)

$$p \rightarrow (q \rightarrow p)$$

Example (Formula)

$$p \rightarrow (q \rightarrow p)$$

Is this formula valid?

$$\models p \rightarrow (q \rightarrow p)$$
?

$$p \& ((!p) | q)$$

Satisfiable?

p & ((!p) | q)

Satisfiable?

$$p \& ((!p) | q)$$

Satisfiable? Satisfying Interpretation?

$$p \& ((!p) | q)$$

Satisfiable?
Satisfying Interpretation?

$$\mathcal{I}(p) = T, \, \mathcal{I}(q) = T$$

$$p \& ((!p) | q)$$

Satisfiable?

V

Satisfying Interpretation?

$$\mathcal{I}(p) = T, \mathcal{I}(q) = T$$

Other Satisfying Interpretations?

$$p \& ((!p) | q)$$

Satisfiable? \checkmark Satisfying Interpretation? $\mathcal{I}(p) = T, \, \mathcal{I}(q) = T$ Other Satisfying Interpretations? \checkmark

$$p \& ((!p) | q)$$

Satisfiable?

Satisfying Interpretation?

$$\mathcal{I}(p) = T, \, \mathcal{I}(q) = T$$

Other Satisfying Interpretations? X

Therefore, also not valid!

$$p \& ((!p) | q)$$

Satisfiable?

V

Satisfying Interpretation?

$$\mathcal{I}(p) = T, \mathcal{I}(q) = T$$

Other Satisfying Interpretations? X

Therefore, also not valid!

$$p \& ((!p) \mid q) \models q \mid r$$

Does it hold?

$$p \& ((!p) | q)$$

Satisfiable?

Satisfying Interpretation?

$$\mathcal{I}(p) = T, \, \mathcal{I}(q) = T$$

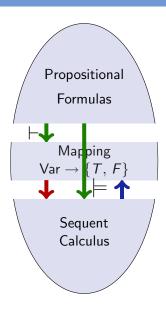
Other Satisfying Interpretations? X

Therefore, also not valid!

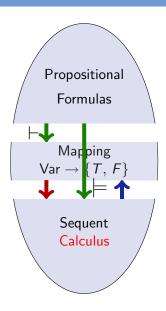
$$p \& ((!p) \mid q) \models q \mid r$$

Does it hold? Yes. Why?

Propositional Logic: Calculus



Propositional Logic: Calculus



Reasoning by Syntactic Transformation

Establish $\models \phi$ by finite, syntactic transformation of ϕ

Reasoning by Syntactic Transformation

Establish $\models \phi$ by finite, syntactic transformation of ϕ

Definition ((Logic) Calculus)

A set of (decidable) syntactic transformation rules $\mathcal R$ defining a relation $\vdash \subseteq \mathit{For}_0$ such that

- $\vdash \phi$ implies $\models \phi$: Soundness (required)
- $\models \phi$ implies $\vdash \phi$: Completeness (desirable)

Reasoning by Syntactic Transformation

Establish $\models \phi$ by finite, syntactic transformation of ϕ

Definition ((Logic) Calculus)

A set of (decidable) syntactic transformation rules $\mathcal R$ defining a relation $\vdash \subseteq \mathit{For}_0$ such that

- $\vdash \phi$ implies $\models \phi$: Soundness (required)
- $\models \phi$ implies $\vdash \phi$: Completeness (desirable)

Sequent Calculus based on notion of sequent

$$\underbrace{\psi_1,\ldots,\psi_m}_{\text{Antecedent}} \quad \Rightarrow \quad \underbrace{\phi_1,\ldots,\phi_n}_{\text{Succedent}}$$

has same semantics as

$$(\psi_1 \& \cdots \& \psi_m) \rightarrow (\phi_1 \mid \cdots \mid \phi_n)$$

$$\{\psi_1, \dots, \psi_m\} \models \phi_1 \mid \cdots \mid \phi_n$$

Notation for Sequents

$$\psi_1, \dots, \psi_m \implies \phi_1, \dots, \phi_n$$

Consider antecedent/succedent as sets of formulas, possibly empty

Notation for Sequents

$$\psi_1, \ldots, \psi_m \implies \phi_1, \ldots, \phi_n$$

Consider antecedent/succedent as sets of formulas, possibly empty

Definition (Schema Variables)

 ϕ, ψ, \ldots match formulas, Γ, Δ, \ldots match sets of formulas Characterize infinitely many sequents with a single schematic sequent

$$\Gamma \quad \Longrightarrow \quad \Delta, \, \phi \, \, \& \, \, \psi$$

Matches any sequent with occurrence of conjunction in succedent

Call ϕ & ψ main formula and Γ , Δ side formulas of sequent

Any sequent of the form $\Gamma, \phi \implies \Delta, \phi$ is logically valid: axiom

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

RuleName
$$\frac{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Rightarrow \Delta_r}^{\text{Premisses}}}{\underbrace{\Gamma \Rightarrow \Delta}_{\text{Conclusion}}}$$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

RuleName
$$\frac{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Rightarrow \Delta_r}^{\text{Premisses}}}{\underbrace{\Gamma_2 \Rightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Rightarrow \Delta_r}_{\text{Conclusion}}}$$

Example

$$\text{andRight} \ \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \ \& \ \psi, \Delta}$$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

$$\mathsf{RuleName} \xrightarrow{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Rightarrow \Delta_r}^{\mathsf{Premisses}}} \underbrace{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \quad \cdots \quad \Gamma_r \Rightarrow \Delta_r}^{\mathsf{Premisses}}}_{\mathsf{Conclusion}}$$

Example

$$\text{andRight} \ \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \ \& \ \psi, \Delta}$$

Sound rule (essential):
$$\models (\Gamma_1 \Longrightarrow \Delta_1 \& \cdots \& \Gamma_r \Longrightarrow \Delta_r) \rightarrow (\Gamma \Longrightarrow \Delta)$$

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible

$$\mathsf{RuleName} \ \frac{\overbrace{\Gamma_1 \Rightarrow \Delta_1 \ \cdots \ \Gamma_r \Rightarrow \Delta_r}^{\mathsf{Premisses}}}{\underbrace{\frac{\Gamma_2 \Rightarrow \Delta_1 \ \cdots \ \Gamma_r \Rightarrow \Delta_r}{\mathsf{Conclusion}}}$$

Example

and Right
$$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \& \psi, \Delta}$$

Sound rule (essential):
$$\models (\Gamma_1 \Longrightarrow \Delta_1 \& \cdots \& \Gamma_r \Longrightarrow \Delta_r) \rightarrow (\Gamma \Longrightarrow \Delta)$$

Admissible to have no premisses (iff conclusion is valid, eg axiom)

André Platzer (CMU)

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$ \begin{array}{c} \Gamma, \phi \Longrightarrow \Delta \\ \hline \Gamma \Longrightarrow ! \phi, \Delta \end{array} $

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$ \begin{array}{c} \Gamma, \phi \Longrightarrow \Delta \\ \hline \Gamma \Longrightarrow ! \phi, \Delta \end{array} $
and	$ \frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, \phi \& \psi \Rightarrow \Delta} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow ! \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \& \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \& \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \mid \psi \Longrightarrow \Delta \end{array}$	$ \frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \mid \psi, \Delta} $

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow ! \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, \phi \& \psi \Rightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \& \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \mid \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \mid \psi, \Delta}$
imp	$ \frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \phi \Rightarrow \psi \Rightarrow \Delta} $	$\frac{\Gamma, \phi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \Rightarrow \psi, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, ! \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow ! \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \& \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \& \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \mid \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \mid \psi, \Delta}$
imp	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \Longrightarrow \psi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \Longrightarrow \psi, \Delta}$
close $\overline{\Gamma,\phi\Rightarrow\phi,\Delta}$ true $\overline{\Gamma\Rightarrow\mathrm{true},\Delta}$ false $\overline{\Gamma,\mathrm{false}\Rightarrow\Delta}$		

Justification of Rules

Justify rules by applying semantic definitions

Justification of Rules

Justify rules by applying semantic definitions

orRight
$$\frac{\Gamma \Longrightarrow \phi, \, \psi, \Delta}{\Gamma \Longrightarrow \phi \mid \psi, \Delta}$$

Follows directly from semantics of sequents

Justification of Rules

Justify rules by applying semantic definitions

orRight
$$\frac{\Gamma \Longrightarrow \phi, \, \psi, \Delta}{\Gamma \Longrightarrow \phi \mid \, \psi, \Delta}$$

Follows directly from semantics of sequents

$$\label{eq:definition} \operatorname{andRight} \ \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \ \& \ \psi, \Delta}$$

$$\Gamma \longrightarrow (\phi \& \psi) \mid \Delta$$
 iff $\Gamma \longrightarrow \phi \mid \Delta$ and $\Gamma \longrightarrow \psi \mid \Delta$ Distributivity of $\&$ over \mid and \longrightarrow

Sequent Calculus Proofs

Goal to prove:
$$\mathcal{G} \equiv \psi_1, \ldots, \psi_m \implies \phi_1, \ldots, \phi_n$$

- ullet find rule ${\mathcal R}$ whose conclusion matches ${\mathcal G}$
- ullet instantiate $\mathcal R$ such that conclusion identical to $\mathcal G$
- recursively find proofs for resulting premisses $\mathcal{G}_1, \ldots, \mathcal{G}_r$
- tree structure with goal as root
- close proof branch when rule without premiss encountered

Goal-directed proof search

In KeY tool proof displayed as a tree

A Simple Proof

 $\Rightarrow (p \& (p \rightarrow q)) \rightarrow q$

A Simple Proof

$$\begin{array}{c}
p \& (p \rightarrow q) \Rightarrow q \\
\Rightarrow (p \& (p \rightarrow q)) \rightarrow q
\end{array}$$

A Simple Proof

$$\begin{array}{c}
p, (p \rightarrow q) \Rightarrow q \\
p & (p \rightarrow q) \Rightarrow q \\
\Rightarrow (p & (p \rightarrow q)) \rightarrow q
\end{array}$$

A Simple Proof

	$p \Longrightarrow q, p$	$p, q \Longrightarrow q$	
$p,(p o\!\!> q) \Longrightarrow q$			
	\Rightarrow (p & (p	-> q)) -> q	

A Simple Proof

CLOSE
$$\xrightarrow{p} \Rightarrow q, \stackrel{p}{p} \xrightarrow{p} \xrightarrow{q}$$
 CLOSE $p, (p \rightarrow q) \Rightarrow q$ $p \& (p \rightarrow q) \Rightarrow q$ $\Rightarrow (p \& (p \rightarrow q)) \rightarrow q$

A Simple Proof

CLOSE
$$\frac{*}{p \Rightarrow q, p}$$
 $\frac{*}{p, q \Rightarrow q}$ CLOSE $\frac{p, (p \rightarrow q) \Rightarrow q}{p \& (p \rightarrow q) \Rightarrow q}$ $\Rightarrow (p \& (p \rightarrow q)) \rightarrow q$

A proof is closed iff all its branches are closed

Demo

Examples/prop.key

DPLL: Davis-Putnam-Logeman-Loveland

Basis for fast SAT solving in propositional logic

```
refute(S):
    while false ∉ S do
        if S=0 then return sat
        if S does not contain unit clause then
              P := choose variable
              /* split on P */
              refute(S with P:=false);
              refute(S with P:=true);
        else
              K := choose unit clause from S
              /* propagate K */
              drop all clauses containing K
              drop complement of K from all clauses
        end if
    end while
    return unsat
```

A | B | C ! A | B | ! D ! A | C ! A | ! C | D A | ! C ! B A | B | C !A | B | ! D !A | C !A | ! C | D A | ! C ! B $A \mid C$ $\mid A \mid D$ $\mid A \mid C$ $\mid A \mid D$ $\mid A \mid D$ $\mid A \mid D$ $\mid A \mid C$ $\mid A \mid C \mid D$ $\mid A \mid C$ $\mid A \mid C \mid D$ $\mid A \mid C$

```
A \mid C
                             A \mid C
 |A||D
                             |A|!D
 ! A | C
 |A| |C| D propagate(|B|) |A| |C|
                              ! A | ! C | D
 A \mid ! C
refute(with A:=true)
 A \mid C
 |A| |D
 ! A | C
              propagate(C)
 |A| |C|D
```

```
A | C
! A | ! D
! A | C
! A | ! C | D
```

 $A \mid ! C$

 $A \mid !C$

```
A \mid C
                             A \mid C
 |A||D
                             |A|!D
 ! A | C
 |A| |C| D propagate(|B|) |A| |C|
                              ! A | ! C | D
 A \mid ! C
refute(with A:=true)
 A \mid C
 |A| |D
 ! A | C
              propagate(C)
 |A| |C|D
```

```
A | C
!A | ! D
!A | C
!A | ! C | D
A | ! C
```

 $A \mid ! C$

```
A | C
!A | ! D
!A | C
!A | ! C | D
A | ! C
```

! C | D

```
A \mid C
!A \mid !D
!A \mid C
!A \mid !D
!A \mid C
!A \mid !C \mid D
A \mid !C \mid D
A \mid !C \mid D

refute(with A:=true)
```

```
\begin{array}{ll} !\,D & !\,D \\ C & \mathsf{propagate}(C) & C \\ !\,C\mid D & !\,C\mid D \end{array}
```

```
A | C
!A | ! D
!A | C
!A | ! C | D
A | ! C
```

```
A \mid C
\mid A \mid \mid D
\mid A \mid C
\mid A \mid \mid C
\mid A \mid \mid C \mid D
\mid A \mid \mid C \mid D
\mid A \mid \mid C
\mid A \mid \mid C
\mid A \mid \mid C
```

refute(with A:=true)

```
 \begin{array}{ccc} ! D & & ! D \\ C & & \mathsf{propagate}(C) & & \mathsf{propagate}(! \, D) & \\ ! \, C \mid D & & D \end{array}
```

refute(with A:=false)

```
A | C
!A | ! D
!A | C
!A | ! C | D
A | ! C
```

```
A \mid C
                                  A \mid C
 ! A | ! D
                                  |A||D
 ! A | C
               propagate(!B) !A | C
 ! A | ! C | D
                                  ! A | ! C | D
 A \mid ! C
                                   \Lambda \sqcup \Gamma \subset
refute(with A:=true)
                              ! D
 ! D
             propagate(C)
                              propagate(!D) unsat! empty clause
 |C|D
                              D
```

```
refute(with A:=false)
```

```
A | C
!A | ! D
!A | C
!A | ! C | D
A | ! C
```

```
A \mid C
                                  A \mid C
 ! A | ! D
                                  |A||D
 ! A | C
               propagate(!B) !A | C
 ! A | ! C | D
                                   ! A | ! C | D
 A \mid ! C
                                   \Lambda \sqcup \Gamma \subset
refute(with A:=true)
                               ! D
 ! D
             propagate(C)
                               propagate(! D) unsat! empty clause
 |C|D
                               D
```

```
refute(with A:=false)
```

```
A | C
! A | ! D
! A | C
! A | ! C | D
A | ! C
```

```
A \mid C
                             A \mid C
 ! A | ! D
                             |A||D
 ! A | C
 |A| |C| D propagate(|B|) |A| |C|
                             ! A | ! C | D
 A \mid ! C
refute(with A:=true)
 ! D
                          ! D
          propagate(C) propagate(D) unsat! empty clause
 !C|D
                          D
```

```
refute(with A:=false)
C
```

```
C propagate(C) C
```

```
A \mid C
                              A \mid C
 |A||D
                              |A||D
 ! A | C
             propagate(!B) !A | C
 ! A | ! C | D
                              ! A | ! C | D
 A \mid ! C
refute(with A:=true)
                          ! D
 ! D
           propagate(C) propagate(!D) unsat! empty clause
 |C|D
                          D
```

```
refute(with A:=false)

C

propagate(C) unsat! empty clause
! C
```

How Expressive is Propositional Logic?

```
Finite set of elements N = \{1, \dots, n\}
```

Let p_{ij} denote p(i) = j. p is a permutation on N is expressible . . . Groups, Latin squares, Sudoku, . . .

Even finite numbers (e.g., bitwise encoding)

Limitations of Propositional Logic

Fixed, finite number of objects

Cannot express: let g be group with arbitrary number of elements

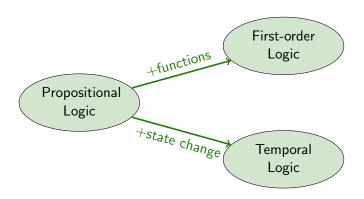
No functions or relations with arguments

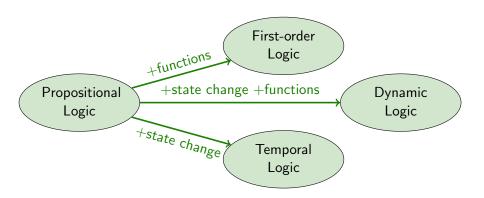
Can express: finite function/relation table p_{ij}

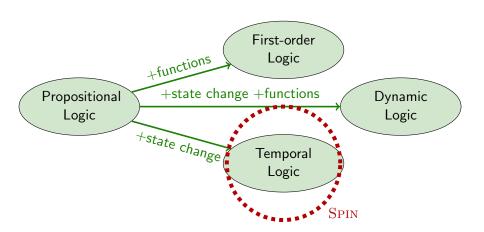
Cannot express: properties of function/relation on all arguments, e.g., + is associative

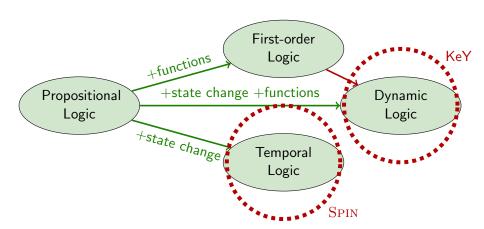
Static interpretation

Programs change value of their variables, e.g., via assignment, call, etc. Propositional formulas look at one single interpretation at a time





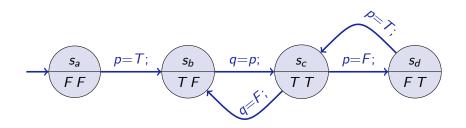




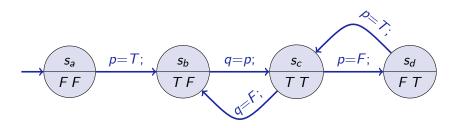
Outline

- Formal Modeling
- Propositional Logic
 - Syntax
 - Semantics
 - Sequent Calculus
 - DPLL
 - Expressiveness
- 3 Temporal Logic

Transition Systems / Kripke Structures



Transition Systems / Kripke Structures



- Each state has its own propositional interpretation!
- Computations, or runs, are infinite paths through states
- Infinitely many different runs
- How to express (for example) that either p or q changes its value infinitely often in each run?

Linear Temporal Logic

An extension of propositional logic that allows to specify properties of sets of runs

Linear Temporal Logic: Syntax

An extension of propositional logic that allows to specify properties of sets of runs

Syntax

Based on propositional signature and syntax.

Extension with three connectives:

Always If ϕ is a formula then so is $[\,]\phi$

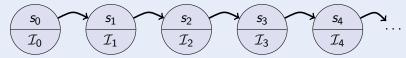
Sometimes If ϕ is a formula then so is $<>\phi$

Until If ϕ and ψ are formulas then so is $\phi \, \mathtt{U} \, \psi$

Concrete Syntax

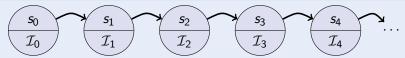
	text book	Spin
Always		[]
Sometimes	\Diamond	<>
Until	\mathcal{U}	U

A run σ is an infinite chain of states



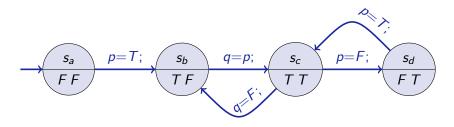
 \mathcal{I}_j propositional interpretation of variables in j-th state Write more compactly $s_0 \ s_1 \ s_2 \ s_3 \dots$

A run σ is an infinite chain of states



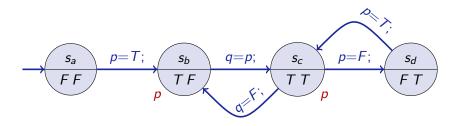
 \mathcal{I}_j propositional interpretation of variables in j-th state Write more compactly $s_0 s_1 s_2 s_3 \dots$

If $\sigma = s_0 s_1 \dots$, then $\sigma|_i$ denotes the suffix $s_i s_{i+1} \dots$ of σ .



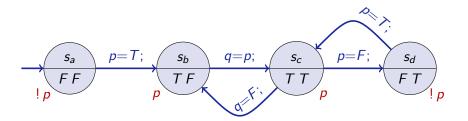
Definition (Validity Relation)

$$\sigma \models p$$
 iff $\mathcal{I}_{\mathbf{0}}(p) = T$, for $p \in \mathcal{P}$.



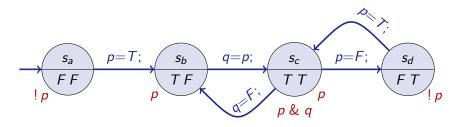
Definition (Validity Relation)

$$\sigma \models p$$
 iff $\mathcal{I}_{\mathbf{0}}(p) = T$, for $p \in \mathcal{P}$.



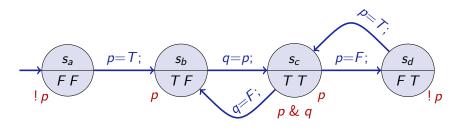
Definition (Validity Relation)

$$\sigma \models p$$
 iff $\mathcal{I}_0(p) = T$, for $p \in \mathcal{P}$.
 $\sigma \models ! \phi$ iff not $\sigma \models \phi$ (write $\sigma \not\models \phi$)



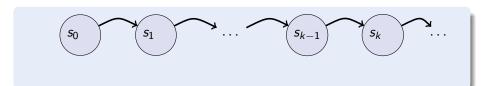
Definition (Validity Relation)

$$\sigma \models p$$
 iff $\mathcal{I}_{0}(p) = T$, for $p \in \mathcal{P}$.
 $\sigma \models ! \phi$ iff not $\sigma \models \phi$ (write $\sigma \not\models \phi$)
 $\sigma \models \phi \& \psi$ iff $\sigma \models \phi$ and $\sigma \models \psi$



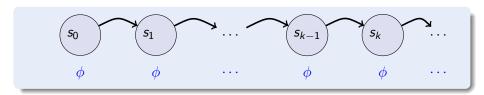
Definition (Validity Relation)

```
\begin{array}{lll}
\sigma \models p & \text{iff} & \mathcal{I}_0(p) = \mathcal{T}, \text{ for } p \in \mathcal{P}. \\
\sigma \models ! \phi & \text{iff} & \text{not } \sigma \models \phi \text{ (write } \sigma \not\models \phi) \\
\sigma \models \phi \& \psi & \text{iff} & \sigma \models \phi \text{ and } \sigma \models \psi \\
\sigma \models \phi \mid \psi & \text{iff} & \sigma \models \phi \text{ or } \sigma \models \psi \\
\sigma \models \phi \rightarrow \psi & \text{iff} & \sigma \not\models \phi \text{ or } \sigma \models \psi
\end{array}
```



Definition (Validity Relation for Temporal Connectives)

Given a run $\sigma = s_0 s_1, s_2 \dots$

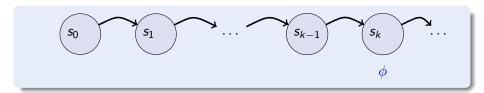


Definition (Validity Relation for Temporal Connectives)

Given a run
$$\sigma = s_0 s_1, s_2 ...$$

 $\sigma \models [] \phi$ iff $\sigma \mid_k \models \phi$ for all $k \ge 0$

Semantics of Temporal Logic

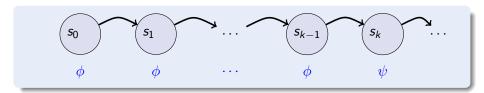


Definition (Validity Relation for Temporal Connectives)

Given a run
$$\sigma = s_0 s_1, s_2 ...$$

 $\sigma \models [] \phi$ iff $\sigma|_k \models \phi$ for all $k \ge 0$
 $\sigma \models <>\phi$ iff $\sigma|_k \models \phi$ for some $k \ge 0$

Semantics of Temporal Logic



Definition (Validity Relation for Temporal Connectives)

```
Given a run \sigma = s_0 \, s_1, s_2 \dots \sigma \models [] \phi \quad \text{iff} \quad \sigma|_k \models \phi \text{ for all } k \geq 0 \sigma \models <>\phi \quad \text{iff} \quad \sigma|_k \models \phi \text{ for some } k \geq 0 \sigma \models \phi \, \mathrm{U} \, \psi \quad \text{iff} \quad \sigma|_k \models \psi \text{ for some } k \geq 0, \text{ and } \sigma|_j \models \phi \text{ for all } 0 \leq j < k
```

Safety and Liveness Properties

Safety Properties

Always-formulas called safety property: something bad never happens Let mutex be variable that is true when two process do not access a critical resource at the same time

[]mutex expresses that simultaneous access never happens

Safety and Liveness Properties

Safety Properties

Always-formulas called safety property: something bad never happens Let mutex be variable that is true when two process do not access a critical resource at the same time

[]mutex expresses that simultaneous access never happens

Liveness Properties

Sometimes-formulas called liveness property: something good happens eventually

Let s be variable that is true when a process delivers a service

<>s expresses that service is eventually provided

What does this mean?

 $[]<>\phi$

Infinitely Often

$$[]<>\phi$$

During a run the formulas $\boldsymbol{\phi}$ will become true infinitely often.

Infinitely Often

$$[]<>\phi$$

During a run the formulas ϕ will become true infinitely often.

What does this mean?

$$<>[]\phi$$

Infinitely Often

$$[]<>\phi$$

During a run the formulas ϕ will become true infinitely often.

Finally Always

$$<>[]\phi$$

During a run the formulas ϕ will become eventually stay true indefinitely.

Validity Temporal Logic

Definition (Validity)

 ϕ is valid, write $\models \phi$, iff ϕ is valid in all runs $\sigma = s_0 s_1 \dots$

Recall that each run s_0 s_1 ... essentially is an infinite sequence of interpretations \mathcal{I}_0 \mathcal{I}_1

 $<>[]\phi$

Valid?

$$<>[]\phi$$

Valid?

No, there is a run in where it is not valid:

$$<>[]\phi$$

Valid?

No, there is a run in where it is not valid:

$$(!\phi, !\phi, !\phi, \ldots)$$

$$<>[]\phi$$

Valid?

No, there is a run in where it is not valid:

$$(!\phi, !\phi, !\phi, \ldots)$$

Valid in some run?

$$<>[]\phi$$

Valid?

No, there is a run in where it is not valid:

$$(!\phi, !\phi, !\phi, \ldots)$$

Valid in some run?

Yes: $(\phi, \phi, \phi, \ldots)$

$$<>[]\phi$$

Valid?

No, there is a run in where it is not valid:

$$(!\phi, !\phi, !\phi, \ldots)$$

Valid in some run?

Yes: $(\phi, \phi, \phi, \ldots)$

$$[]\phi \rightarrow \phi \qquad (![]\phi) \leftarrow (<>!\phi)$$

Both are valid!

$$<>[]\phi$$

Valid?

No, there is a run in where it is not valid:

$$(!\phi, !\phi, !\phi, \ldots)$$

Valid in some run?

Yes: $(\phi, \phi, \phi, \ldots)$

$$[]\phi \rightarrow \phi$$

$$(![]\phi) < > (<>!\phi)$$

Both are valid!

- [] is reflexive
- [] and <> are dual connectives

Transition systems revisited

Definition (Transition System)

A Transition System $\mathcal{T}=(S,Ini,\delta,\mathcal{I})$ is given by a set of states S, a non-empty subset $Ini\subseteq S$ of initial states, and a transition relation $\delta\subseteq S\times S$, and \mathcal{I} labeling each state $s\in S$ with a propositional interpretation \mathcal{I}_s .

Definition (Runs of Transition System)

A run of \mathcal{T} is a is a run $\sigma = s_0 s_1 \dots$, with $s_i \in \mathcal{S}$, such that $s_0 \in \mathit{Ini}$ and $(s_i, s_{i+1}) \in \delta$ for all i.

Semantics of Temporal Logic

Validity of temporal formula is extended to transition systems in the following way:

Definition (Validity Relation)

Given a transition systems $\mathcal{T}=(S,\mathit{Ini},\delta,\mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T}\models\phi$) iff $\sigma\models\phi$ for all runs σ of \mathcal{T} .

Background Literature

- KeY W. Ahrendt: Using KeY. In: B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented Software: The KeY Approach, Chapter 10, only pp 409–424, vol 4334 of LNCS. Springer, 2006.
- Ben-Ari Mordechai Ben-Ari: *Principles of the Spin Model Checker*, Springer, 2008(!). Section 5.2.1 (Promela examples briefly)