
Final Exam

15-317/657 Constructive Logic
André Platzer

December 17, 2015

Name: André Platzer

Andrew ID: aplatzer

Instructions

• This exam is open-book, closed internet.

• Remember to label all inference rules in your deductions.

• Throughout this exam, explain whenever there are notable steps or choices or subtleties and
justify the rationale for your particular choice!

• You have 3 hours to complete the exam.

• There are 6 problems on 16 pages, including blank pages for extra space at the end.

• Consider writing out deductions on scratch paper first.

Max Score

Sequent Calculus 50

Proof Checking 50

Miraculous Sequent Rules 50

Substitutions 60

Unification 50

Prolog 40

Total: 300

Please keep in mind that this is a sample solution, not a model solution. Problems admit
multiple correct answers, and the answer the instructor thought of may not necessarily be the
best or most elegant.

1

15-317/657 Final, page 2/16 Andrew ID:
1 Sequent Calculus (50 points)

This question considers the sequent calculus with cut, weakening, and identity.

Task 120 Prove the following equivalence using sequent calculus
(A ∧B)⊃(C ∧D) ≡ A⊃((B⊃C) ∧ (B⊃D))

Solution: Prove both implications in sequent calculus.

A,B −→ A
id

B, . . . −→ B
id

C,B⊃D,A,B −→ C
id

B⊃C,B⊃D,A,B −→ C
⊃L

B, . . . −→ B
id

B⊃C,D,A,B −→ D
id

B⊃C,B⊃D,A,B −→ D
⊃L

B⊃C,B⊃D,A,B −→ C ∧D
∧R

(B⊃C) ∧ (B⊃D), A,B −→ C ∧D
∧L

A⊃(B⊃C) ∧ (B⊃D), A,B −→ C ∧D
⊃L

A⊃(B⊃C) ∧ (B⊃D), A ∧B −→ C ∧D
∧L

A⊃(B⊃C) ∧ (B⊃D) −→ A ∧B⊃C ∧D
⊃R

−→
(
A⊃(B⊃C) ∧ (B⊃D)

)
⊃
(
A ∧B⊃C ∧D

) ⊃R
and the converse implication in which both main branches are identical except for D
versus C

A,B −→ A
id

A,B −→ B
id

A,B −→ A ∧B
∧R

C,D,A,B −→ C
id

C ∧D,A,B −→ C
∧L

A ∧B⊃C ∧D,A,B −→ C
⊃L

A ∧B⊃C ∧D,A −→ B⊃C
⊃R

A,B −→ A
id

A,B −→ B
id

A,B −→ A ∧B
∧R

C,D,A,B −→ D
id

C ∧D,A,B −→ D
∧L

A ∧B⊃C ∧D,A,B −→ D
⊃L

A ∧B⊃C ∧D,A −→ B⊃D
⊃R

A ∧B⊃C ∧D,A −→ (B⊃C) ∧ (B⊃D)
∧R

A ∧B⊃C ∧D −→ A⊃(B⊃C) ∧ (B⊃D)
⊃R

−→
(
A ∧B⊃C ∧D

)
⊃
(
A⊃(B⊃C) ∧ (B⊃D)

) ⊃R

15-317/657 Final, page 3/16 Andrew ID:
Task 210 Prove the following theorem:

Theorem (Disconnection Property): If =⇒ (¬A∨B)∧C then either A =⇒ ⊥ or =⇒ B and,
either way, also =⇒ C.

Solution: By applying sequent calculus rules, no other rules are applicable, and the
proof starts as either of the two:

A =⇒ ⊥
=⇒ ¬A

⊃R

=⇒ ¬A ∨B
∨R1

=⇒ C

=⇒ (¬A ∨B) ∧ C
∧R

or as
=⇒ B

=⇒ ¬A ∨B
∨R2

=⇒ C

=⇒ (¬A ∨B) ∧ C
∧R

Since these are the only options for applicable rules in sequent calculus, the discon-
nection property follows.

Task 320 Recall that ¬¬A⊃A is not provable in the (intuitionistic) sequent calculus. Give a simple
proof that the law of excluded middleA∨¬A is not provable in the (intuitionistic) sequent
calculus either.

Solution: Prove DNE, which isn’t provable, from the law of excluded middle to show
that the law of excluded middle cannot be provable either.

=⇒ A ∨ ¬A
A,¬¬A −→ A

id
¬A −→ ¬A

id
¬A,⊥ −→ A

⊥L

¬A,¬¬A −→ A
⊃L

A ∨ ¬A,¬¬A −→ A
∨L

¬¬A =⇒ A
cut

=⇒ ¬¬A⊃A
⊃R

Since cut elimination and identity are admissible, if the above proof of an unprovable
=⇒ ¬¬A⊃A were possible with a cut and identity from =⇒ ¬¬A⊃A, it would also
be possible without cut and identity. But =⇒ ¬¬A⊃A is not provable, so there cannot
be a proof, with or without cut and identity, of =⇒ A ∨ ¬A either.

15-317/657 Final, page 4/16 Andrew ID:
2 Proof Checking (50 points)
Task 130 Commodore Horgiatiki performed one case of a cut elimination proof for sequent calcu-

lus. But he is missing some parts and is unsure whether he got a correct proof. Fill in
literally all missing arguments and justifications and steps so that you obtain a complete
proof. If there are any errors or missing justifications in Horgiatiki’s proof, identify and
clearly mark all errors and explain carefully why they are incorrect arguments.

If Γ =⇒ A1 (1)
Γ =⇒ A2 (2)
Γ =⇒ A1 ∧A2 by ∧R on (1) and (2) (3)
Γ, A1 ∧A2, A2 =⇒ C (4)
Γ, A1 ∧A2 =⇒ C by ∧L2 on (4) (5)

Then

Γ, A1 =⇒ C by i.h. on A1 ∧A2 and (3) and (4) (6)
Γ, A1 ∧A2 =⇒ C by i.h. on A2 and (2) and (4) (7)
Γ =⇒ C by i.h. on A1 ∧A2 and (3) and (7) (8)

Solution:

(6) needs Γ, A2 =⇒ C instead and weaken (3) but is actually useless (dead code)

(7) is missing a weakening justification since (2) is not of the form Γ, A1∧A2 =⇒ A2

(which, on top of that, is trivially provable on its own even without Γ so not
helpful).

(8) induction hypothesis is not applicable since the proof resulting by induction
hypothesis via cut elimination from (7) is bigger than the induction hypothesis
permits on same-size cut formula A2 ∧A2.

15-317/657 Final, page 5/16 Andrew ID:
Task 220 Mark all errors in the following sequent calculus proof and subsequently explain whether

and why they are soundness-critical or why they could be accepted with a different argu-
ment.

7©
6© a(x)⊃ p(x, x) =⇒ a(x)⊃ p(x, x)

init

5© a(x)⊃ p(x, x), a(x) =⇒ p(x, x)
⊃R

4© a(x), a(x)⊃ p(x, x) =⇒ ∀y p(y, x)
∀R

3© a(x),∀x (a(x)⊃ p(x, x)) =⇒ ∀y p(y, x)
⊃L

2© ∀x (a(x)⊃ p(x, x)) =⇒ a(x)⊃∀y p(y, x)

1© ∀x (a(x)⊃ p(x, x)) =⇒ ∀y (a(y)⊃∀x p(x, y))
∀R

0© =⇒ ∀x (a(x)⊃ p(x, x))⊃∀y (a(y)⊃∀x p(x, y))
⊃L

Refer to the line numbers in your answers below. Where 1© refers to the whether the
sequent in line 1© can result by applying the given proof rule to the sequent in 0© etc.

Solution:

1© ⊃R instead of ⊃L has been used

2© variables have been shuffled by bound renaming, which is unlike the rule but
would be acceptable. The parameter is supposed to be fresh, which it is not
here, but acceptable since not occurs free.

3© missing ⊃R

4© ∀L and weakening missing

5© unsound, should have chosen fresh name for y not reuse parameter x, which is
unsound and renders this proof unsound

6© ⊃R is the wrong rule. It is invertible, though, so its inverse (⊃R)−1 that is used
here would be admissible.

7© init is the wrong rule since not atomic. The identity rule would be admissible,
though.

15-317/657 Final, page 6/16 Andrew ID:
3 Miraculous Sequent Rules (50 points)

In this question, we consider suggestions for new and improved proof rules that fierce Captain
Toughch came up with. Either show the proof rules to be sound by deriving them or proving
them to be admissible. Or show that they can be used to prove a formula that we cannot prove
soundly and explain briefly why that formula should not be proved.

Task 110
Γ, A ∨D =⇒ C

Γ, A⊃B =⇒ C ⊃B
R1

Solution: unsound, since this gives a proof of falsehood:

=⇒ >
>R

⊥ =⇒ ⊥
init

>⊃⊥ =⇒ ⊥
⊃L

⊥ =⇒ ⊥
init/⊥L

=⇒ ⊥⊃⊥
⊃R

⊥ ∨> =⇒ >
>R

⊥⊃⊥ =⇒ >⊃⊥
R1

=⇒ >⊃⊥
cut

=⇒ ⊥
cut

Consider linear logic now.

Task 210
Γ; · `̀ A(B

Γ; ∆ `̀ !(A(B)
R2

Solution: unsound as too much resource consumption (∆) in the conclusion. The
following example eliminates resourceful >, which should not have a left rule

;A `̀ A
id

; · `̀ A(A
(R

;> `̀ !(A(A)
R2

A(A; · `̀ 1
1L

; !(A(A) `̀ 1
!L

;> `̀ 1
cut

15-317/657 Final, page 7/16 Andrew ID:
Task 310

Γ; ∆ `̀ A Γ; ∆ `̀ B(C

Γ; ∆, A(B `̀ C
R3

Solution: unsound because resource duplication of ∆ in both branches

A `̀ A
init/id

A `̀ A
init/id

A `̀ A
init/id

A,A `̀ A⊗A
⊗R

A `̀ A(A⊗A
(R

A,A(A `̀ A⊗A
R3

This sequent should not be provable, because having one A and a way of turning one
A back into an A does not give two A.

Task 410
Γ; ∆ `̀ A Γ; ∆ `̀ !(B(C)

Γ; ∆, A(B `̀ C
R4

Solution: unsound because even if the second premise appears to need ∆ = (·) to
prove its resource independent succedent, the duplication of ∆ still enables unsound
resource duplication using the with operator:

A `̀ A
init/id

A& !(B(C) `̀ A
&L1

!(B(C) `̀ !(B(C)
id

A& !(B(C) `̀ !(B(C)
&L2

A& !(B(C), A(B `̀ C
R4

This sequent is not provable in linear logic because the proof of A after (L needs the
with resource but then the second premise will not succeed and vice versa.

15-317/657 Final, page 8/16 Andrew ID:
Task 510 Recall natural deduction rules for intuitionistic propositional logic such as

B true
A ∨B true

∨IR

Can you give such a natural deduction proof calculus for linear logic? Briefly justify why
or why not.

Solution: no since resource management / assumption management is impossible
in this two-dimensional notation. This notation for rules is not explicit about what
assumptions are available, so does not provide explicit ways of dividing them up.

15-317/657 Final, page 9/16 Andrew ID:
4 Substitutions (60 points)

Recall that a substitution is a function σ from terms to terms that satisfies

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for all function symbols f and terms ti

and has a finite domain dom(σ) = {x : xσ 6= x} of variables. Recall that τσ denotes the sub-
stitution that is the composition of substitution σ after τ . Finally recall that a variable renaming
is a substitution whose only effect is to replace variables by variables, not by arbitrary terms,
and that, moreover, never renames two different variables to the same variable.

Task 120 Let σ and τ be substitutions such that τσ = (·) is the identity substitution. Then is σ a
variable renaming? Prove or disprove.

Solution: INCOMPLETE SOLUTION: Yes.
It might seem as if this was a counterexample:

(z/x)(f(x)/x) = (z/x)

but only almost, since their composition (z/x) is not the identity substitution, but,
rather, a variable renaming.

15-317/657 Final, page 10/16 Andrew ID:
Task 220 Let σ and τ be any substitutions such that τσ = τ . Then is σ a variable renaming? Prove

or disprove.

Solution: No if τ replaces everything away that σ would have replaced.

(f(a)/x)(g(b)/x) = (f(a)/x)

The effect of the compositions of substitutions is indeed equivalent to the effect of the
single substitution, but still the substitution σ would have had an effect on its own
that is not just a variable renaming.

15-317/657 Final, page 11/16 Andrew ID:
Recall that a representation ` for a substitution is of the form, e.g.:

` = (r1/x1, r2/x2, . . . , rn/xn)

For any such representation ` of a substitution, let ˆ̀denote the substitution belonging to
that representation `.

Task 320 Let `, k be representations of substitutions ˆ̀and k̂, respectively. Under what condition on
` and k is ` ∪ k a representation of the composition k̂ ˆ̀ of ˆ̀ after k̂? Prove correctness of
the condition you identified or prove why no such condition exists.

Solution: dom(k̂) ∩ cod(l̂) = ∅ and dom(l̂) ∩ cod(k̂) = ∅
INCOMPLETE SOLUTION: proof

15-317/657 Final, page 12/16 Andrew ID:
5 Unification (50 points)

Unification specified the judgment t .
= s | θ where θ is the most-general unifier for terms t

and s. But, with some caveats, it works for formulas, too. In this question, we construct the
judgment F .

= G | θ with most-general unifier θ for formulas F and G.

Task 110 Augment the judgment by writing new inference rules to also cover the case p(t̄) for
predicate symbol p with a sequence of terms t̄ as arguments.

Solution:
t̄
.
= s̄ | θ

p(t̄)
.
= p(s̄) | θ

Task 210 Augment the judgment further to the case of formulas of the form F ∨G.

Solution:
F1

.
= G1 | θ1 F2θ1

.
= G2θ1 | θ2

F1 ∨ F2
.
= G1 ∨G2 | θ1θ2

Task 310 Give a most-general unifier of

p(f(x), x) ∨ q(g(u, x))

and p(z, g(b, c)) ∨ q(g(z, y))

Solution:
(f(g(b, c))/z, g(b, c)/x, f(g(b, c))/u, g(b, c)/y)

15-317/657 Final, page 13/16 Andrew ID:
Task 420 Prove soundness of your answers from Tasks 1 and 2, i.e. that the result, θ, of F .

= G | θ
indeed is a unifier for formulas F and G.

Solution:
The conditions for substitutions are extended to formulas as:

p(t1, . . . , tn)σ = p(t1σ, . . . , tnσ) for all predicate symbols p and terms ti
(φ ∨ ψ)σ = (φσ) ∨ (ψσ) likewise for other connectives

Case: D =

E
t
.
= s | θ

p(t)
.
= p(s) | θ

where t = p(t) and s = p(s).

tθ = sθ By soundness of unification for terms on E
p(t)θ = p(s)θ By definition of substitution

Case: E =

D1

F1
.
= G1 | θ1

E2
F2θ1

.
= G2θ1 | θ2

F1 ∨ F2
.
= G1 ∨G2) | θ1θ2

where θ = θ1θ2.

F1θ1 = G1θ1 By i.h.(i) on D1

(F1θ1)θ2 = (G1θ1)θ2 By equality reasoning
F1(θ1θ2) = G1(θ2θ2) By substitution composition
(F2θ1)θ2 = (G2θ1)θ2 By i.h.(ii) on E2
F2(θ1θ2) = G2(θ1θ2) By substitution composition
(F1 ∨ F2)(θ1θ2) = (G1 ∨G2)(θ1θ2) By defn. of substitution

15-317/657 Final, page 14/16 Andrew ID:
6 Prolog (40 points)

In this question we will study ways of computing the derivative of polynomials in one variable
with Prolog. Assume that polynomial expressions are represented as data structures of type
poly built in an arbitrary shape from these constructors:

plus(S,T) represents the sum of S and T

times(S,T) represents the product of S and T

var indicates the variable (only one variable occurs so no need for a name)

num(N) represents the number literal N (say as an integer)

In this problem you will define a predicate diff/2 to compute the derivative of a polynomial
expression represented in this way. For example, the following query is expected to succeed:

?- diff(plus(var,num(5)), plus(num(1), num(0))).

Modes in Prolog describe the intended ways of using a predicate. Mode +poly refers to an
input argument of type poly that needs to be provided. Mode -poly refers to an output
argument of type poly that will be computed by the predicate when all inputs are provided.

Task 120 Write a Prolog program diff(+poly,-poly) that takes the polynomial as an input in the
first argument and produces its derivative as an output in the second argument.

15-317/657 Final, page 15/16 Andrew ID:
Task 210 With mode diff(+poly,-poly), the predicate from Task 1 computes a derivative. Is there

a mode with which the predicate from Task 1 computes antiderivatives (also known as
indefinite integrals)? Justify.

Task 310 Is there a mode with which the predicate from Task 1 can be used to check whether a given
polynomial expression is the integral of another given polynomial expression? Justify.

15-317/657 Final, page 16/16 Andrew ID:

Blank page for extra answers if needed

