15-411 Compiler Design: Lab 5
Fall 2012

Instructor: Andre Platzer
TAs: Alex Crichton, lan Gillis

Test Programs Due: 11:59pm, Tuesday, November 6, 2012
Checkpoint 1 Due: 11:59pm, Tuesday, November 13, 2012
Final Compiler and Paper Due: 11:59pm, Thursday, November 15, 2012

1 Introduction

The goal of the lab is to implement a complete compiler for the language L4 and also implement
a first set of basic optimizations. The language itself is unchanged from Lab 4, but its dynamic
semantics is now safe in that certain operations such as attempting to access an array out of bounds
must result in an exception.

2 Preview of Deliverables

As for the earlier labs, you are required to hand in test programs as well as a complete work-
ing compiler that translates L/ source programs into correct target programs written in x86-64
assembly language. In addition you have to submit a PDF file via email to the course staff at
(15411@symbolaris. com), which describes and evaluates the optimizations you implemented.

3 Safety Requirements

The behavior of L4 was purposely unspecified in certain situations. When the Lab 5 compiler
is called with the ——unsafe switch this behavior remains undefined. This is also the default, for
backward compatibility.

When the Lab 5 compiler is called with the --safe switch, the unspecified behavior is now
explicated as outlined below.

There are two memory-related errors that should be reported to the user:

1. illegal memory references. For the purpose of automated testing, the program must raise
exception 11 (SIGSEGV)

2. array bounds error. For the purpose of automated testing, the program must also raise
exception 11 (SIGSEGV)



Pointers

As in Lab 4, derefencing the null pointer is an illegal memory reference. Since the page at address 0
is read /write protected by the operating system, attempting to read from 0 will yield the appropriate
exception.

Structs

When the address of a struct is computed as 0, an illegal memory reference must be reported. This
may happen when computing *p for a pointer p declared with var p : s* for a struct s. In this
case we must signal an exception instead of basing address calculations for fields on 0, because
with a sufficiently large offset we may skip past the read/write protected pages at the beginning of
memory.

Arrays

If an array A was allocated with alloc_array(r, n) for a non-negative n, any attempt to access
Ali] where i < 0 or i > n must generate an array bounds error.

Similarly to structs, when the address of an array is computed as 0, an illegal memory reference
must be reported.

Allocation

When allocation fails, an illegal memory reference must be reported. Allocation with alloc_array (7,
n) for n < 0 must fail with an array bounds error; other allocations may or may not fail depending
on current resource constraints. Your test cases should use a moderate amount of memory so that
one would not expect allocation to fail due to resource constraints. In any case, alloc is not allowed
to return the null pointer.

4 Array Layout

In order to be able to call C libraries, your code must strictly adhere to the convention speci-
fied in the Application Binary Interface (ABI) for the x86-64 and C. This is exactly as in Lab 4
(data alignment, struct layout, calling conventions, stack pointer alignment), except that special
considerations are necessary when compiling to safe code.

In order for your code to be able to check whether array access is in bounds, it must store
with each array the number of elements of the array. This should be done as follows: if the data
elements in an array start at address a, then the (non-negative) integer n recording the number of
elements in the array is stored at a —8,a —7,a — 6,a — 5. The bytes at a —4,...a — 1 are padding,
to simplify alignment (the strictest alignment requirement in our language for data is 0 mod 8, and
calloc returns memory aligned in this manner).

This layout will allow the implementation to correctly call C functions with array addresses in
arguments, whether we are using safe or unsafe mode. Arrays generated by C cannot be returned
to L4 in safe mode because their size is in general unknown. Special wrapper code is needed in
this case, which may be different for different libraries.



5 Optimizations

In addition to the safe compilation option, you are also required to implement and describe some
basic optimizations. Choose your optimizations from the following menu.

1

Instruction selection. You may optimize instruction selection to generate more compact
or faster code. This includes generating good code for conditions (e.g., avoiding set instruc-
tions) or loops (e.g., enabling good branch prediction or aligning jump targets), and other
improvements on your code.

Constant propagation and folding. Implement constant propagation together with con-
stant folding and eliminating constant conditional branches.

Dead code elimination. Implement dead code elimination using the analysis described in
the lecture notes.

Eliminating register moves. Explore techniques for eliminating register moves such as
improved instruction selection, copy propagation, register coalescing, and peephole optimiza-
tion. We suggest coalescing registers in a single pass after register allocation as suggested by
Pereira and Palsberg and the notes to Lecture 3.

Common subexpression elimination. Implement common subexpression elimination,
with or without type-based alias analysis to avoid redundant loads from memory.

Other optimizations. If there is a particular optimization you would like to implement
that is not in the above list you may wait until the next lab or contact the instructor with a
proposal.

You may choose one of the two following categories to determine which optimizations and how
many you wish to implement.

A Implement any three optimizations from the menu as described in lecture. You may prefer

B

this option if you wish to implement a greater number of optimizations as simple extensions
to your compiler, and observe the effect that these transformations have on the quality of
compiled code.

Use an Intermediate Representation based on Static Single Assignment form.
— You may transform your code to SSA form using either the more common dominance
frontier algorithm, or the value numbering algorithm presented in lecture.

— After reaching SSA form, apply at least one optimization from items 2, 3 or 5.

— Finally, eliminate ¢ nobes at or prior to register allocation. Remember that the chordal
graph allocator provably finds an optimal coloring for programs in SSA form. Reducing
the number of moves generated during unSSA is good, but correctness comes first!

You may prefer this option if you are looking for an extra challenge, and if you are planning
ahead to add more optimizations in lab 6.



If you have already implemented any of the optimizations, you may revisit and describe them,
perhaps improve them further.

Your compiler must take a new option, -0n (dash capital-O), where ~00 means no optimizations,
-01 performs some optimizations, and -02 performs the most aggressive optimizations. Part of our
evaluation may be based on the performance improvements you achieve.

You are required to write a short paper of 3-5 pages, to be submitted via email to 15411@symbolaris.com
as a PDF file. This paper should describe each optimization, how you implemented it, any heuris-
tics you developed for its application, and whether you found it to be effective both on contrived
examples and the provided benchmark suite.

6 Regression Testing

As you are implementing optimizations, it is extremely important to carry out regression testing
to make sure your compiler remains correct. The optimizations must be valid for the safe memory
semantics. All tests from previous labs are fair game. If regression testing is not performed
automatically, we will apply it by hand during instructor evaluation.

7 Deliverables and Deadlines

For this project, you are required to hand in test cases, a complete working compiler for L4 that
produces correct target programs written in Intel x86-64 assembly language, and a description and
assessment of your optimizations. When we grade your work, we will use the gcc compiler to
assemble and link the code you generate into executables using the provided runtime environment
on the lab machines.

Test Cases

We require both of the following:

o At least 8 test cases that test the behaviour of safe memory. At least two of these must be
expection tests. Since the static semantics has not changed from lab 4, you are not required
to hand in any error test cases. However, if you notice something that the previous test suites
failed to test for, feel free to add error test cases.

o At least 6 test cases that are interesting from the point of view of optimizations. Do not design
these as stress tests which test the runtime of the compiler. Instead, make them interesting
with respect to the quality of code produced. These tests may be assembled into a suite of
benchmark tests.

Keep in mind that optimizations are generally designed to benefit the common case of pro-
grams, not pathological cases or uncommon programming patterns. For instance, having a
program full of dead code is not particularly interesting, though it might help you sanity test
dead-code-elimination.

At the checkpoint, your compiler must be able to compile and run these within the time limit
with -00. The compiled binary for each test case should run within 1 second with the reference
compiler on the lab machines; we will use a 5 second limit for testing student compilers.



At the final handin, your compiler must be able to compile and run the tests within the time
limit with -02. Please plan for the fact that compilers are not necessarily required to implement
SSA, and even if they do, not necessarily using a fast algorithm. Therefore, as interesting as your
test cases may get, they should allow compilers to run optimizations that run in quadratic time
with respect to the number of branches in the program, or quadratic with respect to the number
of temporaries.

Test cases are due 11:59pm on Tuesday Nov 6, 2012.

Checkpoint 1: Compiler with Safe Memory Semantics

Compilers that successfully implement safe memory semantics are due 11:59pm on Tue Nov 13,
2012. We don’t expect that safe memory semantics to take a very long time to implement. However,
there ought to be enough time before the checkpoint to restructure the compiler if required, and
enough time after it to implement a few optimizations.

This is a GRADED CHECKPOINT. You cannot use late days for the checkpoint.

Final Compiler and Project Report

Compilers that implement optimizations are due 11:59 on Thursday, Nov 15, 2012. The
sources should be handed in through SVN as usual, and must contain documentation that is up to
date. This submission will also be automatically tested as usual for correctness. Remember that
optimizations are required to preserve memory safety.

The project report should be a PDF file of approximately 3-5 pages, and should be emailed
to the course staff at 15411@symbolaris.com The report should describe your optimizations and
assess how well they worked in improving the code, over individual tests and the benchmark suite.

If you use algorithms that have not been covered in class, cite any relevant sources, and briefly
describe how they work. If the algorithms have been covered in class, cite the appropriate lecture
notes, and do not waste any space on describing the optimizations. The interactions of the opti-
mizations with each other and the effect of optimizations on the produced code should be given
adequate treatment.

You may use your late days for both the compiler and the paper. Whichever component is
turned in the latest is the number of late days you will consume. If the compiler was turned in one
day late and the paper was turned in two days late, you would consume two late days overall for
labb.



