
15-411 Compiler Design: Lab 3

Fall 2012

Instructor: Andre Platzer
TAs: Alex Crichton and Ian Gillis

Test Programs Due: 11:59pm, Tuesday, October 9, 2012
Compilers Due: 11:59pm, Tuesday, October 16, 2012

1 Introduction

The goal of the lab is to implement a complete compiler for the language L3 . This language extends
L2 with the ability to define functions and call them. This means you will have to change all phases
of the compiler from the second lab. One can write some interesting recursive and iterative functions
over integers in this language. Correctness is still paramount, but performance starts to become a
bit more of an issue as we may slightly tighten the time-bounds for the compiler.

Black bars on the right side of the text indicate significant changes from the previous lab.

Spec changes during the lab will be hilighted with red bars.

2 L3 Syntax

The lexical specification of L3 remains unchanged from that of L2 . The syntax of L3 is the superset
of L2 as presented in Figure 2. Ambiguities in this grammar are resolved according to the same
rules of precedence as in L2 .

Whitespace and Token Delimiting

In L3 , whitespace is either a space, horizontal tab (\t), vertical tab (\v), linefeed (\n), carriage
return (\r) or formfeed (\f) character in ASCII encoding. Whitespace is ignored, except that it
delimits tokens. Note that white space is not a requirement to terminate a token. For instance, ()
should be tokenized into a left parenthesis followed by a right parenthesis according to the given
lexical specification. However, white space delimiting can disambiguate two tokens when one of
them is present as a prefix in the other. For example, += is one token, while + = is two tokens.
The lexer should produce the longest valid token possible. For instance, ++ should be lexed as one
token, not two.
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ident ::= [A-Za-z_][A-Za-z0-9_]*

num ::= ⟨decnum⟩ | ⟨hexnum⟩

⟨decnum⟩ ::= 0 | [1-9][0-9]*

⟨hexnum⟩ ::= 0[xX][0-9a-fA-F]+

⟨special characters⟩ ::= ! ~ - + * / % << >>

< > >= <= == != & ^ | && ||

= += -= *= /= %= <<= >>= &= |= ^=

-> . -- ++ ( | ) [ ] ; ? :

⟨reserved keywords⟩ ::= struct typedef if else while for continue break

return assert true false NULL alloc alloc_array

int bool void char string

Terminals referenced in the grammar are in bold. Other classifiers not referenced within the
grammar are in ⟨angle brackets and in italics⟩. ident, ⟨decnum⟩, and ⟨hexnum⟩ are described
using regular expressions.

Figure 1: Lexical Tokens

Comments

L3 source programs may contain C-style comments of the form /* ... */ for multi-line comments
and // for single-line comments. Multi-line comments may be nested (and of course the delimiters
must be balanced).

2.1 Grammar

The syntax of L3 is defined by the context-free grammar in Figure 2. Ambiguities in this grammar
are resolved according to the operator precedence table in Figure 3 and the rule that an else

provides the alternative for the most recent eligible if.
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⟨program⟩ ::= ϵ | ⟨gdecl⟩ ⟨program⟩

⟨gdecl⟩ ::= ⟨fdecl⟩ | ⟨fdef⟩ | ⟨typedef⟩

⟨fdecl⟩ ::= ⟨type⟩ ident ⟨param-list⟩ ;

⟨fdef⟩ ::= ⟨type⟩ ident ⟨param-list⟩ ⟨block⟩

⟨param⟩ ::= ⟨type⟩ ident

⟨param-list-follow⟩ ::= ϵ | , ⟨param⟩ ⟨param-list-follow⟩

⟨param-list⟩ ::= ( ) | ( ⟨param⟩ ⟨param-list-follow⟩ )

⟨typedef⟩ ::= typedef ⟨type⟩ ident ;

⟨type⟩ ::= int | bool | ident

⟨block⟩ ::= { ⟨stmts⟩ }

⟨decl⟩ ::= ⟨type⟩ ident | ⟨type⟩ ident = ⟨exp⟩

⟨stmts⟩ ::= ϵ | ⟨stmt⟩ ⟨stmts⟩

⟨stmt⟩ ::= ⟨simp⟩ ; | ⟨control⟩ | ⟨block⟩

⟨simp⟩ ::= ⟨lvalue⟩ ⟨asop⟩ ⟨exp⟩ | ⟨lvalue⟩ ⟨postop⟩ | ⟨decl⟩ | ⟨exp⟩

⟨simpopt⟩ ::= ϵ | ⟨simp⟩

⟨lvalue⟩ ::= ident | ( ⟨lvalue⟩ )

⟨esleopt⟩ ::= ϵ | else ⟨stmt⟩

⟨control⟩ ::= if ( ⟨exp⟩ ) ⟨stmt⟩ ⟨elseopt⟩

| while ( ⟨exp⟩ ) ⟨stmt⟩

| for ( ⟨simpopt⟩ ; ⟨exp⟩ ; ⟨simpopt⟩ ) ⟨stmt⟩

| continue; | break; | return ⟨exp⟩ ;

⟨arg-list-follow⟩ ::= ϵ | , ⟨exp⟩ ⟨arg-list-follow⟩

⟨arg-list⟩ ::= ( ) | ( ⟨exp⟩ ⟨arg-list-follow⟩ )

⟨exp⟩ ::= ( ⟨exp⟩ ) | ⟨intconst⟩ | true | false | ident

| ⟨unop⟩ ⟨exp⟩ | ⟨exp⟩ ⟨binop⟩ ⟨exp⟩

| ⟨exp⟩ ? ⟨exp⟩ : ⟨exp⟩ | ident ⟨arg-list⟩

⟨intconst⟩ ::= num

⟨asop⟩ ::= = | += | -= | *= | /= | %= | &= | ^= | |= | <<= | >>=

⟨binop⟩ ::= + | - | * | / | % | < | <= | > | >= | == | !=

| && | || | & | ^ | | | << | >>

⟨unop⟩ ::= ! | ~ | -

⟨postop⟩ ::= ++ | --

The precedence of unary and binary operators is given in Figure 3. Non-terminals are in ⟨angle
brackets⟩. Terminals are in bold. The absence of tokens is denoted by ϵ.

Figure 2: Grammar of L3
3



Operator Associates Meaning

() n/a explicit parentheses

! ~ - ++ -- right logical not, bitwise not, unary minus, increment, decrement

* / % left integer times, divide, modulo

+ - left integer plus, minus

<< >> left (arithmetic) shift left, right

< <= > >= left integer comparison

== != left overloaded equality, disequality

& left bitwise and

^ left bitwise exclusive or

| left bitwise or

&& left logical and

|| left logical or

? : right conditional expression

= += -= *= /= %=

&= ^= |= <<= >>= right assignment operators

Figure 3: Precedence of operators, from highest to lowest
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3 L3 Elaboration

We need to provide static semantics for each of the gdecls:

• fdecl: which declares a function. This is very similar to function delcarations in C.

• fdef: which defines a function. Once again, very similar to C.

• typedef: which defines an alias for a type that is entirely transparent to the type system.

The semantics become more complicated because the language also intrinsically supports a foreign
function interface through a mechanism of headers. Consult the section on the compile-time envi-
ronment for details on how headers are supplied. For now, it is sufficient to know that a header is
a list of gdecls that satisfy the following conditions:

• They are treated as if they are available to the L3 program before or above the gdecls in
the L3 sources in a syntactic sense.

• They can contain typedefs or fdecls, but NOT fdefs. These declarations can be used to
call functions that have been defined by the compilation environment.

• The fact that a fdecl was supplied in a header is an essential distinguishing factor that is
preserved for the purpose of the static semantics.

To expeditiously capture the similarity and differences between gdecls in headers and gdecls in L3
sources, we assume that the parser has parsed the header with the same rules as for sources, but
has tagged the gdecls as external. On paper, we will represent this supposition by prefixing the
production rules for gdecls with the dummy terminal extern.

Keeping to the precedent set by L2 we isolate the dirty work of context sensitive syntax checking
and desugaring in the elaborator. However, depending on how you prefer to organize your work,
this section may very well be called “static semantics”. The following elaboration strategy serves
both as a specification and an implementation hint.

To capture the behaviour of gdecls, we recommend that you enhance the abstract syntax with the
following

adecl ::= nil | extfdecl(f, τ) | intfdecl(f, τ) | fun(f, τ, params, s)
aprog ::= adecl | aseq(adecl, aprog)
params ::= ϵ | (x : τ,params)
τ ::= int | bool | (τ, . . . , τ) ⊃ τ

s is a statement as defined in the abstract syntax of L3 . Note that (τ, . . . , τ) ⊃ τ is the abstract
syntax for function types. The types in the parentheses are the types of the arguments, and the
type at the right is the return type. There is no concrete syntax for function types because the
grammar does not allow function variables.

Elaboration, which was previously context insensitive, is now given under several contexts. Whole
programs and gdecs are elaborated under three simultaneously maintained contexts – ∆ is the set
of external function identifiers, Ω is the context of type identifiers bound to the types that they
alias, and Σ is the set of all defined function identifiers. We begin by elaborating the top level of a
program.
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⟨∆;Ω;Σ⟩ ⊢ ϵ ; nil

gdecl@⟨∆;Ω;Σ⟩ ; adecl[∆′; Ω′; Σ′] ⟨∆′; Ω′; Σ′⟩ ⊢ ⟨program⟩ ; aprog

⟨∆;Ω;Σ⟩ ⊢ ⟨gdecl⟩ ⟨program⟩ ; aseq(adecl, aprog)

In defining the top-level elaboration of a program, we have captured that the elaboration of any gdecl
adds information to the contexts, and that gdecls are elaborated in the given order to accumulate
the information. We accomplish this by writing the rules to elaborate individual gdecls in a state-
passing style. This is often a useful way to modularize rules, especially when multiple rules update
the contexts in multiple ways. In our particular case, the judgement

⟨gdecl⟩@⟨∆;Ω;Σ⟩ ; adecl[∆;Ω;Σ]

means that we elaborate ⟨gdecl⟩ at some context, to produce an adecl and an updated context.
The updates all preserve monotonicity of the context.

f ̸∈ Dom(Ω) Ω ⊢ t ; τ Ω ⊢ ⟨param-list⟩ ; tlist

extern t f ( ⟨param-list⟩ );@⟨∆;Ω;Σ⟩ ; extfdecl(f, tlist ⊃ τ)[∆, f ; Ω;Σ]

f ̸∈ Dom(Ω) Ω ⊢ t ; τ Ω ⊢ param-list ; tlist

t f ( ⟨param-list⟩ );@⟨∆;Ω;Σ⟩ ; intfdecl(f, tlist ⊃ τ)[∆;Ω;Σ]

In the aforementioned rules:

• Names of functions and variables may not collide with the names of defined types.

• Function parameters and locally declared variables with overlapping scopes may not have the
same names.

• Elaboration of a parameter list is handled separately, under the context of type identifiers.
You should check that the formal parameter names are unique and none of them are also
visible typedef’d names.

• Every bit of elaboration that produces a type τ in its result occurs under the context Ω. This
is in order to substitute abstract syntax types for every occurrence of typedef’d identifiers.

Here is how Ω is used to handle types and typedefs.

t′ ̸∈ Dom(∆;Ω;Σ) Ω ⊢ t ; τ

typedef t t’ ;@⟨∆;Ω;Σ⟩ ; nil[∆;Ω, t′ : τ ; Σ]

External typedefs can be handled by an identical rule. Note that typedef’d names should not conflict
with function names available before it. Observe that we discard type aliases in the elaborated
program. We handle all namespacing issues at elaboration. This sort of erasure is often done
in practice with transparent type aliases, because it is difficult to use them in large programs to
produce meaningful type errors without also have some notion of saturating for every alias that
you can give complex types. Where type aliases are preserved, there isn’t a strong guarantee that
type checking or type inference will use them when reporting type errors.
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τ ∈ {int, bool}
Ω ⊢ τ ; τ

Ω(t) = τ

Ω ⊢ t ; τ

Extend these rules to handle parameter lists where necessary. Finally, we get to function definitions.

f ̸∈ ∆ f ̸∈ Dom(Ω) f ̸∈ Σ Ω ⊢ t ; τ Ω ⊢ ⟨param-list⟩ ; tlist Ω ⊢ ⟨block⟩ ; s

t f ( ⟨param-list⟩ ) ⟨block⟩ ;@⟨∆;Ω;Σ⟩ ; fun(f, tlist ⊃ τ, params, s)[∆;Ω;Σ, f ]

Note the following:

• As usual, we check for collision with type names. However, here we also check for collision
with external declarations.

• The elaboration of blocks to statements is also done under the context of type aliases, unlike
in L2 . You should enhance the rules from L2 to ensure that variable names within the body of
a function don’t collide with type names. You should also substitute types for type variables.

• There is no rule for extern function definitions. Headers should not contain function defini-
tions.

• The design of the language is supposed to allow separate compilation in a manner similar
to that present in C. Therefore, not every declared function is required to be defined. See
the details of the compilation and runtime environment for further information. We do check
that we don’t define a function more than once.

4 L3 Static Semantics

Type checking changes a bit.

• The typing rules for the entire program can be specified under a single context binding
identifiers to types. Since function types have an abstract syntax, they can also be added to
the same context.

• You should add compatibility rules to check that all declarations and definitions of the same
function name have compatible types, i.e. matching return types, the same number of argu-
ments, and matching argument types.

• Function call expressions are similar to C. A function must be called with the correct number
of arguments, and with compatible types. The whole expression has the corresponding return
type.

• Function names are recursively bound. Therefore, when descending into a function’s body
to type check it, the function must be bound to its type in the context. Similarly, function
parameters and their types should also be available when type checking the body. They are
bound after the function name.

• As in L2 , local variables are not allowed to shadow other local variables. However, local
variables are allowed to shadow function names. This is similar to the behavior of C. You
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can easily emulate this behavior by enhancing the rules for declarations from L2 as follows:

x ̸∈ Dom(Γ) Γ, x : τ ⊢ s valid

Γ ⊢ declare(x, τ, s) valid
Γ(x) = (τ1, . . . , τn) ⊃ τ ′ Γ, x : τ ⊢ s valid

Γ ⊢ declare(x, τ, s) valid

• Note that for all purposes of type checking and shadowing, the parameters of a function have
parity with local variables.

As you can probably observe, we have imported a lot of the non-uniform behavior of C to L3 , espe-
cially with respect to name collisions and shadowing. It is plausible to handle these inconsistencies
to varying extents in the elaborator and the type checker. You are free to make design decisions
that suit your compiler. However, wherever you draw your module boundaries (if at all), think
carefully about why your implementation is equivalent to this specification.

Control flow analysis is performed on each defined function as it was for main in L2 . Note that
the precise condition given for initialization checking in L2 ensures that function parameters are
not affected by the check. For all practical purposes, they can be deemed to be initialized at the
beginning of the function.

Now that we have function calls, we define main as identifier with the special requirement that it
can only be defined as a function with no parameters and the return type of int. Control flow in
any L3 program begins in the main function. Please refer to the section describing the runtime.

5 L3 Dynamic Semantics

The dynamic semantics is extended directly from that of L2 .

Function calls f(e1, . . . , en) are very similar to their counterparts in C with the following significant
difference: they must evaluate their arguments from left to right before passing the resulting values
to f .

We also allow expressions to appear as statements, because we now have the concept of expressions
with side-effects. These side-effects are quite simple in L3 : divide by zero exceptions, memory
access exceptions, and non-termination.

6 Project Requirements

For this project, you are required to hand in test cases and a complete working compiler for L3
that produces correct target programs written in Intel x86-64 assembly language.

We also require that you document your code. Documentation includes both inline documentation
and a README document which explains the design decisions underlying the implementation
along with the general layout of the sources. If you use publicly available libraries, you are required
to indicate their use and source in the README file. If you are unsure whether it is appropriate
to use external code, please discuss it with course staff.

When we grade your work, we will use the gcc compiler to assemble and link the code you generate
into executables using the provided runtime environment on the lab machines.
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Your compiler and test programs must be formatted and handed in via Autolab as specified below.
For this project, you must also write and hand in at least ten test programs, at least two of which
must fail to compile, at least two of which must generate a runtime error, and at least two of which
must execute correctly and return a value.

Test Files

Test programs should have extension .l3 and start with one of the following lines

//test return i program must execute correctly and return i
//test exception n program must compile but raise runtime exception n
//test exception program must compile but raise some runtime exception
//test error program must fail to compile due to an L3 source error

followed by the program text. In L3 , the exceptions defined are SIGFPE (8), SIGSEGV (11), SIGALARM
(14). Note that infinitely recursing programs might either raise 11 or 14, depending on whether
they first run out of memory or time. Test programs which exercise this behavior should therefore
only verify that some exception is raised.

Since the language now supports function calls, the runtime environment contains external functions
providing I/O capabilities (see the runtime section for details). Beginning with L3 , the testing
framework takes advantage of this. For a test program $test.l3:

• If a file $test.l3.in exists, its contents will be available to the program as input during
testing.

• If a file $test.l3.out exists and the program returns, the output of the program must be
identical to the contents of the file for the test to pass.

All test files should be collected into a directory test/ (containing no other files) and submitted
via the Autolab server.

The reference compiler may display a warning on //test error if your test case accidentally
exercises a language feature that might be a part of a future lab or C0. Please do not ignore this
warning. Do not hand in tests that cause this warning.

Now that the language we are compiling supports function calls, we would like some fraction of
your test programs to compute “interesting” functions on specific values; please briefly describe such
examples in a comment in the file. Disallowed are programs which compute Fibonacci numbers,
factorials, greatest common divisors, and minor variants thereof. Please use your imagination. We
will read your tests!

Compiler Files

The files comprising the compiler itself should be collected in a directory compiler/ which should
contain a Makefile. Important: You should also update the README file and insert a description
of your code and algorithms used at the beginning of this file. Even though your code will not be
read for grading purposes, we may still read it to provide you feedback. The README will be crucial
information for this purpose.

Issuing the shell command

% make l3c
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should generate the appropriate files so that

% bin/l3c <args>

will run your L3 compiler. The command

% make clean

should remove all binaries, heaps, and other generated files.

Runtime Environment

Your compiler should accept a command line argument -l which must be given the name of a file as
an argument. For instance, we will be calling your compiler using the following command: bin/l3c
-l l3rt.h0 $test.l3. Here, l3rt.h0 is the ubiquitous header mentioned in the elaboration and
static semantics sections.

The runtime for this lab contains functions to perform input and output. The input functions read
from stdin, and the output functions write to stderr. (The result of the program is printed to
stdout.) If an input function tries to read off the end of a file, the effect will be the same as a
stack overflow–that is, SIGSEGV (11) will be raised. The runtime provides some other functions, as
well; l3rt.h0 contains a listing and a small amount of documentation.

The GNU compiler and linker will be used to link your assembly to the implementations of the
external functions, so you need not worry much about the details of calling to external functions.
You should ensure that the code you generate adheres to the C ABI for Linux on x86 64. Also
recall the provision that all declared functions need not be defined. As long as you mangle all your
functions, the linker should prevent the complete compilation of any test that does not define all
used symbols.

The runtime environment defines a function main() which calls a function _c0_main() your assem-
bly code should provide and export. Your compiler will be tested in the standard Linux environment
on the lab machines; the produced assembly must conform to this environment.

To maintain interoperability with the ABI for C on linux, bools should be given an underlying
32 bit integer representation with false mapping to 0 and true mapping to 1. This runtime detail
should in no way be visible in L3 itself.

Using the Subversion Repository

Handin and handout of material is via the course subversion repository.

The handout files for this course can be checked out from our subversion repository via

% svn checkout https://cvs.concert.cs.cmu.edu/15411-f12/groups/<team>

where <team> is the name of your team. You will find materials for this lab in the lab3 subdirec-
tory. Or, if you have checked out 15411-f12/groups/<team> directory before, you can issue the
command svn update in that directory.

After adding and committing your handin directory to the repository with svn add and svn commit

you can hand in your tests or compiler through Autolab.

https://autolab.cs.cmu.edu/15411-f12
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Once logged into Autolab, navigate to the appropriate assignment and select

Checkout your work for credit

from the menu. It will perform one of

% svn checkout https://cvs.concert.cs.cmu.edu/15411-f12/groups/<team>/lab3/tests

% svn checkout https://cvs.concert.cs.cmu.edu/15411-f12/groups/<team>/lab3/compiler

to obtain the files directories to autograde, depending on whether you are handing in your test files
or your compiler.

If you are submitting multiple versions, please remember to commit your changes to the repository
before asking the Autolab server to grade them! And please do not include any compiled files or
binaries in the repository!

What to Turn In

Hand in on the Autolab server:

• At least 10 test cases, at least two of which generate an error, at least two of which raise a
runtime exception, and at least two of which return a value. The directory tests/ should
only contain your test files and be submitted via subversion as described above. The server
will test your test files and notify you if there is a discrepancy between your answer and the
outcome of the reference implementation. You may hand in as many times as you like before
the deadline without penalty. If you feel the reference implementation is in error, please
notify the instructors. The compiled binary for each test case should run in 2 seconds with
the reference compiler on the lab machines; we will use a 5 second limit for testing compilers.

Test cases are due 11:59pm on Tuesday, October 9, 2012.

• The complete compiler. The directory compiler/ should contain only the sources for your
compiler and be submitted via subversion. The Autolab server will build your compiler, run
it on all extant test files, link the resulting assembly files against our runtime system (if
compilation is successful), execute the binaries (each with a 5 second time limit), and finally
compare the actual with the expected results. You may hand in as many times as you like
before the deadline without penalty.

Compilers are due 11:59pm on Tuesday, October 16, 2012.

7 Notes and Hints

Elaboration

Please take the recommended elaboration strategy seriously. It significantly streamlines your com-
piler and reducing the amount of work you do in each remaining pass of a multi-pass compiler.
Isolating elaboration also makes your source code more portable.

We again highly recommend using an explicit elaboration pass, rather than transforming source
code on the fly during parsing. This will make the next lab a significantly smoother experience.
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Static Checking

The specification of static checking should be implemented on abstract syntax trees, translating
the rules into code. You should take some care to produce useful error messages.

It may be tempting to wait until liveness analysis on abstract assembly to see if any variables are
live at the beginning of the program and signal an error then, rather than checking this directly on
the abstract syntax tree. There are two reasons to avoid this: (1) it may be difficult or impossible
to generate decent error messages, and (2) the intermediate representation might undergo some
transformations (for example, optimizations, or transforming logical operators into conditionals)
which make it difficult to be sure that the check strictly conforms to the given specification.

Compiling Functions

It is not a strict requirement, but we recommend compiling functions completely independently
from each other, taking care to respect the calling conventions but making no other assumptions.
Interprocedural program analysis and optimization is difficult and, if you do it at all, is better left
to a later lab.

Calling Conventions

Your code must strictly adhere to the x86-64 calling conventions. Please refer to the course webpage
for resources on the ABI and calling conventions. Note this oft-forgotten rule: %rspmust be 16-byte
aligned. GCC often ignores this rule when it isn’t actively using floats, because the requirement is
only consequential when the floating point stack is in use.
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