
Assignment 5: Optimizations

15-411: Compiler Design
Josiah Boning (jboning@andrew) and Ryan Pearl (rpearl@andrew)

Due: Friday, December 9, 2011

Reminder: Assignments are individual assignments, not done in pairs. The work must be all your own.
You may hand in a handwritten solution or a printout of a typeset solution in person at Josiah’s office

hour on Friday, or send a typeset solution by email to 15411@symbolaris.com. If you decide not to typeset
your answers, make sure the text and pictures are legible and clear.

Problem 1: Jump Tables (20 points)

The switch statement is a language construct found in C but not C0. One way of compiling a switch
statement is to treat it as a cascade of if-else statements (with some extra considerations made for letting
control flow fall through to the next case if the “break” statement is missing from a case). However, there
is a more efficient implementation that can often be used: a jump table. In a jump table, the value being
switched on is used as an index into a table of jump statements that each lead to the instructions for a
particular case.

(a) Write down an assembly representation of the switch statement below that uses a jump table. We
are mostly interested in seeing the concept of a jump table, so feel free to use “abstract” assembly
(with variable names, for example) so long as all of your instructions have a clear counterpart on a real
processor.

unsigned int x, y, z;

// Other code

switch (x) {

case 0: y = 1; break;

case 1: y = 8; z = 9; break;

case 2: y = 3; break;

default: y = 0;

}

// More code

(b) What condition does a switch statement need to meet for a jump table to be used?

(c) Describe how a compiler could transform a switch statement which doesnt meet the necessary condition
into one that does.

(d) When would applying your transformation from part (c) not be a good idea?

1



Problem 2: Instruction Scheduling (20 points)

One of the techniques used in processor architecture to improve performance is pipelining. A pipelined
processor divides instruction execution into stages, allowing several instructions to be executed at the same
time.

For this problem, we will assume that the processor begin executing one instruction per cycle, and each
instruction takes three cycles to complete.1 We will also assume that the processor reads any registers
required by an instruction at the beginning of the first cycle, and that the results of an instruction are visible
registers at the end of the third cycle. If an instruction would be pipelined, but depends on the value of a
register which is currently being computed, the processor will stall until the value is ready.

For example, suppose we want to run the following small assembly snippet:

r0 <- r0 * 2

r1 <- r1 + 4

r2 <- r1 / 3

The instructions passing through the processor’s pipeline would look as follows:

cycle stage 1 stage 2 stage 3
0 r0 <- r0 * 2

1 r1 <- r1 + 4 r0 <- r0 * 2

2 r1 <- r1 + 4 r0 <- r0 * 2

3 r1 <- r1 + 4

4 r2 <- r1 / 3

5 r2 <- r1 / 3

6 r2 <- r1 / 3

Note that the processor could not begin executing the third instruction until the second instruction was
complete. Often, a compiler can mitigate this delay by (carefully) changing the order of the instructions it
emits, called instruction scheduling. In this case, swapping the first and second lines of the assembly allows
the processor to execute the instructions in one fewer cycle without changing the result of the program:

cycle stage 1 stage 2 stage 3
0 r1 <- r1 + 4

1 r0 <- r0 * 2 r1 <- r1 + 4

2 r0 <- r0 * 2 r1 <- r1 + 4

3 r2 <- r1 / 3 r0 <- r0 * 2

4 r2 <- r1 / 3

5 r2 <- r1 / 3

1On modern processors, this is a gross oversimplification. Superscalar execution, multiple dispatch, and other architectural
features make the situation quite complicated. Out-of-order execution even to some extend supersedes the sort of instruction
scheduling discussed here. See for example the Intel optimization manual: http://www.intel.com/content/dam/doc/manual/

64-ia-32-architectures-optimization-manual.pdf

2

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf


We will be working with the following abstract assembly:

r1 <- r0

r2 <- r1 + 4

r3 <- r2 - 5

r4 <- 5

r5 <- r3 * 2

r6 <- 8

r7 <- r6 / r1

r6 <- 10

r8 <- r6 % r1

(a) On our hypothetical processor, how many cycles does it take to execute the code as given? You should
show some supporting work rather than simply giving a final answer, but it does not need to be in the
table format we used above (though this may be helpful to you!).

(b) Write down all dependencies between instructions. You may wish to refer to the November 11 lecture
notes on data dependencies. (Arrows between lines of code is an acceptable format for your answer.)

(c) Give a version of the program which schedules instructions to reduce execution time, making sure not
to change the result of the program. How many cycles does your version of the program take to run?
Again, provide some support for this number.

(d) Pipelining speeds up execution by taking advantage of parallelism in the program. What is the the-
oretical limit of this speedup? To answer this, imagine that rather than having one of each pipeline
stage, our processor can begin executing arbitrarily many instructions in the same cycle, and find the
minimum number of cycles required to execute the program.2

Problem 3: Inlining (20 points)

Inlining is the technique of replacing a call to some function foo by inserting the body of foo into the calling
function.

(a) What are the advantages and disadvantages of inlining?

(b) Given your answer to part (a), what criteria would you use to decide which call sites to inline in a
program? Your criteria should be precise enough that a compiler (as opposed to a programmer) would
be able to check them.

(c) An important consideration for implementing optimizations is when to apply them in the compilation
process. If you were implementing inlining, would you apply it at the AST, the IR, or the post-code-
generation instructions level? Explain your decision, and also list any advantages of the other options
that you considered.

2One tool designed for a very similar sort of problem is the Gantt Chart: http://en.wikipedia.org/wiki/Gantt_chart

3

http://en.wikipedia.org/wiki/Gantt_chart

