

Calling Conventions

“For a good time...”

15-411, Fall 2011 edition
Josiah Boning

Synchronization

● Lab 2 due tonight
● For real this time!

● Lab 3 and Homework 3 out

Synchronization: Lab 3

● Function calls
● Implementation familiar from 213?

● Today should be a good refresher

● Still due on Tuesday
● I/O now!

Synchronization: Homework 3

● Function calls
● Design: exceptions
● Due Thursday

● Hand in early on Tuesday to get feedback

Language Feature: Functions

● Name a programming language without
functions!
● Okay, Prolog...

● Some languages built around them
● (λx.xx)(λx.xx)

● Organization is good
● Recursion is powerful

Functions in C0

int main() { ... }

bool foo(int bar, bool baz) { ... }

● Spec says:
● t n (t1 x1, …, tn xn) { body }

● Not first-class
● So no concrete syntax for the types

Functions in C0

bool foo(int bar, bool baz) { ... }

x = foo(2+3, y || z);
● But what does it mean?

● t1 = 2+3; t2 = y || z;
● initialize bar and baz with values of t1 and t2
● run body of foo
● x gets return value of foo

● Okay, so we have semantics
● Now how do we actually run these things?

Hardware – What We've Got

● State
● Program counter
● Registers
● Memory

● Instructions
● Straight-line execution (PC steps)
● Unconditional and conditional jumps

Hardware – What We Want

● A sequence of instructions executed

[instructions in main]

[instructions in foo]

[instructions in main]

Compilation Strategy 1

● Wherever foo appears, insert all of foo's
instructions
● Probably before register allocation

Compilation Strategy 1

● Wherever foo appears, insert all of foo's
instructions
● Probably before register allocation

● Bad
● Much more work during register allocation
● Huge program—lots of repeated code
● Can't do recursion!

Hardware – What We Want

● A sequence of instructions executed

[instructions in main]

[instructions in foo]

[instructions in main]

Hardware – What We Want

● Insert jumps!

[instructions in main]

jmp foo

[instructions in foo]

jmp where_we_were

[instructions in main]

Hardware – What We Want

● Insert jumps!

[instructions in main]

jmp foo

[instructions in foo]

jmp where_we_were

[instructions in main]
● How do we know where we were?

Compilation Strategy 2

● Self-modifying code
● Before jumping,

rewrite the last
instruction in foo...

● So that it jumps back
to the next instruction!

foo:

[instructions]

bar:

jmp some_location

main:

[instructions]

mov {jmp baz}, (bar)

jmp foo

baz:

[instructions]

Compilation Strategy 2

● Self-modifying code
● Before jumping,

rewrite the last
instruction in foo...
● So that it jumps back

to our next instruction!

● Yes, programs
actually did this
● Back in the good old

days

foo:

[instructions]

bar:

jmp some_location

main:

[instructions]

mov (bar), {jmp baz}

jmp foo

baz:

[instructions]

Compilation Strategy 3

● Store next PC in a
register
● The “link register”

● Jump to the location
in the register

● Hardware support:
indirect jump

foo:

[instructions]

bar:

jmp %lr

main:

[instructions]

mov baz, %lr

jmp foo

baz:

[instructions]

Compilation Strategy 3, Improved

● Store next PC and
jump all at once

● Hardware support:
jump-and-link, indirect
jump

foo:

[instructions]

jmp %lr

main:

[instructions]

jal foo

[instructions]

In the Real World: MIPS

● “Link Register”: $31
● Instruction support:

● jal – jump and link

● jr – jump register

foo:

[instructions]

jr $31

main:

[instructions]

jal foo

[instructions]

In the Real World: ARM

● “Link Register”: LR
● Instruction support:

● bl – branch with link

foo:

[instructions]

mov pc, LR

main:

[instructions]

bl foo

[instructions]

In the Real World: x86???

● Possible!
● Instruction support:

● No jump-and-link:
need to set up a link
register manually
– lea makes it easy

● jmp supports register
argument

● Not standard.

foo:

[instructions]

jmp %ebx

main:

[instructions]

lea %ebx, bar

bl foo

bar

[instructions]

Where do we stand?

● Can transfer control to and from blobs of code
● “Subroutine call”
● No arguments or return value

● Can emulate using global state
– Yuck

● Both blobs of code want to use registers
● Who has to remember the original values?

Introducing: The Stack (x86)

● Area in memory
● %esp (stack pointer) tracks the front of the stack

● push and pop instructions
● Arguments go there
● Local variables go there
● Return addresses go there
● I hope this is all review

In the Real Real World – x86

● Store the return
address on the stack

● The standard in x86
● Instructions:

● call pushes next PC

● ret pops into PC

foo:

[instructions]

ret

main:

[instructions]

call foo

[instructions]

Arguments (x86)

● Pushed onto the
stack before a call

● Right-to-left!

Directly after a call:

arg3

arg2

arg1

return address

Stack Frames (x86)

● Set up a new “stack
frame”
● push %ebp
● mov %ebp, %esp
● sub %esp, size

● The stack is available
to store local
variables

● Clean up before ret
● mov %esp, %ebp

During function
execution:

arg3

arg2

arg1

return address

old %ebp

<local storage>

Return Values (x86)

● In %eax

Across Architectures

● As with return address, other ways to do it
● Arguments in registers
● More than one return value

Across Architectures

MIPS
(32-bit)

ARM x86 x86-64

Arguments $a0-$a4, then
stack

r0-r3, then
stack

on stack %rdi, %rsi,
%rdx, %r8,
%r9, then
stack

Return
Address

$31 LR on stack on stack

Return Value $v0, $v1 r0-r3 %eax %eax

Across Architectures

MIPS
(32-bit)

ARM x86 x86-64

Arguments $a0-$a4, then
stack

r0-r3, then
stack

on stack %rdi, %rsi,
%rdx, %r8,

%r9, then stack

Return Address $31 LR on stack on stack

Return Value $v0, $v1 r0-r3 %eax %eax

● Secretly, it's worse than this
● Floating point?
● x86-64: Microsoft x64 or System V AMD64?
● x86: stdcall, fastcall, safecall, thiscall
● Your compiler must use the System V AMD64

convention

Where Are We?

● Have control flow transfer
● Have argument passing
● Have local variable storage
● Have return values
● Missing: register coordination

Register Saving

● Called function uses registers
● Caller's data was there
● Someone's got to save it somewhere
● Caller save: callee may overwrite values

● Caller must store on stack before the call

● Callee save: must be unchanged across call
● Callee's job to ensure this

Across Architectures

MIPS
(32-bit)

ARM x86 x86-64

Callee Save
Registers

$16-$23, $28,
$29, $30, $31

r4-r8, r10, r11,
SP

(others) %rbx, %rbp,
%r12, %r13,
%r14, %r15

Caller Save (others) (others) %eax, %ecx,
%edx

%rax, %rdi,
%rsi, %rdx,
%rcx, %r8,
%r9, %r10,
%r11

Registers & Function Calls

● x86-64: arguments in registers
● Move temps into argument registers
● Call function
● Minimizes live ranges of pre-colored nodes in

register allocation

● Caller-save registers
● Add a rule: if l is a function call instruction, ∀ r ∈ the

caller-save registers, def(l, r)
● If a temp is alive after the call, add edges between it

and the caller-save registers

Handling Callee Save Registers

● One approach:
● Save at the beginning of the function
● Restore at the end

● Bad
● Saves registers that aren't overwritten

Handling Callee Save Registers

● Better:
● Add moves from callee save registers into temps at

the beginning, and moves back at the end
● Let register allocation deal with it

● See also Frank Pfenning's notes (on the course
website)

So now...

● You're ready to write a compiler, right?

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

