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Synchronization

● Lab 2 due tonight
● For real this time!

● Lab 3 and Homework 3 out



  

Synchronization: Lab 3

● Function calls
● Implementation familiar from 213?

● Today should be a good refresher

● Still due on Tuesday
● I/O now!



  

Synchronization: Homework 3

● Function calls
● Design: exceptions
● Due Thursday

● Hand in early on Tuesday to get feedback



  

Language Feature: Functions

● Name a programming language without 
functions!
● Okay, Prolog...

● Some languages built around them
● (λx.xx)(λx.xx)

● Organization is good
● Recursion is powerful



  

Functions in C0

int main() { ... }

bool foo(int bar, bool baz) { ... }

● Spec says:
● t n (t1 x1, …, tn xn) { body }

● Not first-class
● So no concrete syntax for the types



  

Functions in C0

bool foo(int bar, bool baz) { ... }

x = foo(2+3, y || z);
● But what does it mean?

● t1 = 2+3; t2 = y || z;
● initialize bar and baz with values of t1 and t2
● run body of foo
● x gets return value of foo



  

● Okay, so we have semantics
● Now how do we actually run these things?



  

Hardware – What We've Got

● State
● Program counter
● Registers
● Memory

● Instructions
● Straight-line execution (PC steps)
● Unconditional and conditional jumps



  

Hardware – What We Want

● A sequence of instructions executed

[instructions in main]

[instructions in foo]

[instructions in main]



  

Compilation Strategy 1

● Wherever foo appears, insert all of foo's 
instructions
● Probably before register allocation



  

Compilation Strategy 1

● Wherever foo appears, insert all of foo's 
instructions
● Probably before register allocation

● Bad
● Much more work during register allocation
● Huge program—lots of repeated code
● Can't do recursion!



  

Hardware – What We Want

● A sequence of instructions executed

[instructions in main]

[instructions in foo]

[instructions in main]



  

Hardware – What We Want

● Insert jumps!

[instructions in main]

jmp foo

[instructions in foo]

jmp where_we_were

[instructions in main]



  

Hardware – What We Want

● Insert jumps!

[instructions in main]

jmp foo

[instructions in foo]

jmp where_we_were

[instructions in main]
● How do we know where we were?



  

Compilation Strategy 2

● Self-modifying code
● Before jumping, 

rewrite the last 
instruction in foo...

● So that it jumps back 
to the next instruction!

foo:

[instructions]

bar:

jmp some_location

main:

[instructions]

mov {jmp baz}, (bar)

jmp foo

baz:

[instructions]



  

Compilation Strategy 2

● Self-modifying code
● Before jumping, 

rewrite the last 
instruction in foo...
● So that it jumps back 

to our next instruction!

● Yes, programs 
actually did this
● Back in the good old 

days

foo:

[instructions]

bar:

jmp some_location

main:

[instructions]

mov (bar), {jmp baz}

jmp foo

baz:

[instructions]



  

Compilation Strategy 3

● Store next PC in a 
register
● The “link register”

● Jump to the location 
in the register

● Hardware support: 
indirect jump

foo:

[instructions]

bar:

jmp %lr

main:

[instructions]

mov baz, %lr

jmp foo

baz:

[instructions]



  

Compilation Strategy 3, Improved

● Store next PC and 
jump all at once

● Hardware support: 
jump-and-link, indirect 
jump

foo:

[instructions]

jmp %lr

 

main:

[instructions]

jal foo

[instructions]



  

In the Real World: MIPS

● “Link Register”: $31
● Instruction support:

● jal – jump and link

● jr – jump register

foo:

[instructions]

jr $31

 

main:

[instructions]

jal foo

[instructions]



  

In the Real World: ARM

● “Link Register”: LR
● Instruction support:

● bl – branch with link

foo:

[instructions]

mov pc, LR

 

main:

[instructions]

bl foo

[instructions]



  

In the Real World: x86???

● Possible!
● Instruction support:

● No jump-and-link: 
need to set up a link 
register manually
– lea makes it easy

● jmp supports register 
argument

● Not standard.

foo:

[instructions]

jmp %ebx

 

main:

[instructions]

lea %ebx, bar

bl foo

bar

[instructions]



  

Where do we stand?

● Can transfer control to and from blobs of code
● “Subroutine call”
● No arguments or return value

● Can emulate using global state
– Yuck

● Both blobs of code want to use registers
● Who has to remember the original values?



  

Introducing: The Stack (x86)

● Area in memory
● %esp (stack pointer) tracks the front of the stack

● push and pop instructions
● Arguments go there
● Local variables go there
● Return addresses go there
● I hope this is all review



  

In the Real Real World – x86

● Store the return 
address on the stack

● The standard in x86
● Instructions:

● call pushes next PC

● ret pops into PC

foo:

[instructions]

ret

 

main:

[instructions]

call foo

[instructions]



  

Arguments (x86)

● Pushed onto the 
stack before a call

● Right-to-left!

Directly after a call:

arg3

arg2

arg1

return address



  

Stack Frames (x86)

● Set up a new “stack 
frame”
● push %ebp
● mov %ebp, %esp
● sub %esp, size

● The stack is available 
to store local 
variables

● Clean up before ret
● mov %esp, %ebp

During function 
execution:

arg3

arg2

arg1

return address

old %ebp

<local storage>



  

Return Values (x86)

● In %eax



  

Across Architectures

● As with return address, other ways to do it
● Arguments in registers
● More than one return value



  

Across Architectures

MIPS 
(32-bit)

ARM x86 x86-64

Arguments $a0-$a4, then 
stack

r0-r3, then 
stack

on stack %rdi, %rsi, 
%rdx, %r8, 
%r9, then 
stack

Return 
Address

$31 LR on stack on stack

Return Value $v0, $v1 r0-r3 %eax %eax



  

Across Architectures

MIPS 
(32-bit)

ARM x86 x86-64

Arguments $a0-$a4, then 
stack

r0-r3, then 
stack

on stack %rdi, %rsi, 
%rdx, %r8, 

%r9, then stack

Return Address $31 LR on stack on stack

Return Value $v0, $v1 r0-r3 %eax %eax

● Secretly, it's worse than this
● Floating point?
● x86-64: Microsoft x64 or System V AMD64?
● x86: stdcall, fastcall, safecall, thiscall
● Your compiler must use the System V AMD64 

convention



  

Where Are We?

● Have control flow transfer
● Have argument passing
● Have local variable storage
● Have return values
● Missing: register coordination



  

Register Saving

● Called function uses registers
● Caller's data was there
● Someone's got to save it somewhere
● Caller save: callee may overwrite values

● Caller must store on stack before the call

● Callee save: must be unchanged across call
● Callee's job to ensure this



  

Across Architectures

MIPS 
(32-bit)

ARM x86 x86-64

Callee Save 
Registers

$16-$23, $28, 
$29, $30, $31

r4-r8, r10, r11, 
SP

(others) %rbx, %rbp, 
%r12, %r13, 
%r14, %r15

Caller Save (others) (others) %eax, %ecx, 
%edx

%rax, %rdi, 
%rsi, %rdx, 
%rcx, %r8, 
%r9, %r10, 
%r11



  

Registers & Function Calls

● x86-64: arguments in registers
● Move temps into argument registers
● Call function
● Minimizes live ranges of pre-colored nodes in 

register allocation

● Caller-save registers
● Add a rule: if l is a function call instruction, ∀ r ∈ the 

caller-save registers, def(l, r)
● If a temp is alive after the call, add edges between it 

and the caller-save registers



  

Handling Callee Save Registers

● One approach:
● Save at the beginning of the function
● Restore at the end

● Bad
● Saves registers that aren't overwritten



  

Handling Callee Save Registers

● Better:
● Add moves from callee save registers into temps at 

the beginning, and moves back at the end
● Let register allocation deal with it

● See also Frank Pfenning's notes (on the course 
website)



  

So now...

● You're ready to write a compiler, right?

● Questions?
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