Lecture Notes on
Advanced Garbage Collection

15-411: Compiler Design
André Platzer

Lecture 21

1 Introduction

More information on garbage collection can be found in [App98, Ch 13.5-
13.7] and [Wil94, Section 1-2] athttp://www.cs.cmu.edu/~fp/courses/
15411-£f08/misc/wilson94—gc.pdfweb.

2 Generation Scavenging

The basic observation behind generation scavenging garbage collectors is
that old objects seldom die. New objects either die quickly or become old
objects. The principle is to partition memory into regions R, ..., R, and
allocate all new memory in R;. Whenever a memory region R; is full, we
run garbage collection with copying into R;;1. The exception is the last
memory region R,,, where garbage collection algorithms other than mark-
and-copy could be used. The effect of generation scavenging is that old
objects successively walk towards R,, and will not have to be touched dur-
ing most garbage collection runs. In order to prevent explicit traversal of
the old memory regions R, lists of all references or pages referenced are
sometimes used.

3 Garbage Collection Complexity
Let R be the number of words of reachable heap objects and H be the size

of the heap. Strictly speaking, we only have to visit pointer data in the
reachable heap objects, but we ignore this for simplicity. The mark phase

LECTURE NOTES


http://www.cs.cmu.edu/~fp/courses/15411-f08/misc/wilson94-gc.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f08/misc/wilson94-gc.pdf

L21.2 Advanced Garbage Collection

takes time O(R) for depth-first search, because each reachable object needs
to be visited once. The cleanup phase (e.g., sweep) takes time O(H). That
is the total cost of a mark and free or mark and sweep garbage collector run
is of the form cR + dH for some constants c, d, typically ¢ > d. That is a
notable complexity. But the point is that we only need to do it occasionally.
The beneficial outcome of running garbage collection is that it frees R — H
words of memory. Thus the cost of garbage collection per word that it frees

is
cR+dH

H-R

After all, we only need to run garbage collection again after we ran out of
memory again, which now contains H — R free words more than before.
This is the amortized cost. From this amortized cost, we can directly read off
that garbage collection has a high cost if we run it all the time for reclaiming
every single word of unused memory. Then the denominator H — R is small
and the total amortized cost high. Yet if we wait long enough to reclaim
more memory (H — R is large), then the benefit is large and the amortized
cost low. If H is much larger than R, then the amortized cost per word is
approximately d.

If the garbage collector determines after a run that the ratio R/ H of used
to total memory is large, e.g., R/H > 0.5, then its benefit is limited and it
can ask the operating system for more memory.

4 Schorr-Waite Pointer-Reversal Marking Algorithm

The Schorr-Waite algorithm for garbage collection works without a stack. It
works by pointer reversal instead. Before visiting a child node, the Schorr-
Waite algorithm will change the child pointer to point back to the parent
node instead. When the algorithm returns back to that node, it restores the
old pointer value. The algorithm does not need a stack, because it uses
the graph structure to store the search information instead. But it needs a
counter at each edge to store which child to visit next. This counter can
be small because it only needs to be as large as the maximum number of
pointers in any data structure. See Figure 1.

5 Incremental Garbage Collection on the Fly

The major problem with the previous garbage collection algorithms is that
the program needs to be suspended during the garbage collector run. If

LECTURE NOTES



Advanced Garbage Collection L21.3

Figure 1: Start of Schorr-Waite run on an object graph

the program keeps running concurrently with the garbage collector, it can
modify arbitrary pointers. Thus, without suspending the program, the sim-
ple mark algorithms cannot ensure that an object that had never been ref-
erenced during the garbage collector’s marking phase is still unreferenced
at the time of freeing the memory. The program might have just deleted a
reference from object a to b before the garbage collector visits a. If the pro-
gram then inserts the pointer to b into a different object c later, the garbage
collector will never know if it had visited c already.

In principle, the converse problem also exists. The algorithm cannot
ensure that it found all unused heap objects because some might have gone
unreferenced since the last check. But this converse problem is not critical
at all, because the worst that happens is that some unused memory will
remain allocated until the next garbage collector run.

LECTURE NOTES



L21.4 Advanced Garbage Collection

The practical problems of garbage collectors that have to suspend the
program run are obvious. The performance becomes unpredictable, be-
cause there is no good way of knowing when the garbage collector will
interrupt the program and do its job. This makes this form of garbage col-
lection useless for problems with real-time requirements.

Incremental garbage collection due to Dijkstra et al.’s garbage collection
on the fly algorithm works by tricoloring objects. We distinguish between
objects that have not been visited yet (marked white), objects where depth-
first search is in progress (marked grey) and objects that have been visited
in full, including all children (marked black). When the garbage collector
is finished, it will free all objects that have been marked white. In order for
this to work, the program needs to inform the incremental garbage collector
about the pointers it changed.

More precisely, every pointer assignment b = a in the program will
change the marking of the target object at address a from white to grey (if it is
white, otherwise the marking will stay unchanged). This is one example of
a write barrier, i.e., an algorithm where something needs to be done at every
write. This principle ensures the following invariants, which the program
cannot spoil (as long as it sticks to the above pointer assignment tagging
principle):

1. black objects never point to white objects, because the garbage collector
would only mark an object to be black after all children have been, and
the program never changes the marks of black objects.

2. Every grey node is still on the list of objects that the garbage collector
will look at before freeing it (possibly in next garbage collector run).

After the garbage collector is done with a full pass through memory, white
objects are indeed unused and can be freed.

The main complexity of this approach is the need to have a quick oper-
ation for conditional marking that turns white markings into grey markings
at pointer assignments. One source of trouble is concurrency of the pro-
gram. A reliable implementation of the write barrier requires expensive
synchronization of program access to the marking and garbage collector
marking operations.

Dijkstra et al.’s garbage collector can be refined to a write barrier that
updates only some white pointers to grey, not all of them. If the white pointer
a is stored into a black object b, then a is marked grey. While there are some
variations of the write barrier and also read barrier algorithms, they all
share this problem.

LECTURE NOTES



Advanced Garbage Collection L21.5

A different implementation of the write barrier is due to Boehm, De-
mers and Shenker that uses the virtual memory management unit of the
CPU to implement markings. The way this works is that a memory page
in which all objects have been marked black is changed to read-only. Then
if the program (without any need for synchronization) accesses this page
with any write operation to any data field, a page fault is signalled and the
operating system guarantees that the page fault handler will be executed
before the program. This page fault handler will then mark all objects on
the possibly invalidated page to grey and change the page to read-write
again. This results in higher granularity but reduced synchronization cost.

6 Interface to Compiler

What the compiler has to provide to an informed garbage collector is run-
time information about type layout either statically or dynamically with
self-identifiers (for languages with polymorphic types). For instance, the
first entry of every data record could point to a type descriptor declaring
the size of the object and the offsets of each pointer field.

Problems arise for pointers that are only stored in registers, not on the
stack. These are either treated conservatively (impossible for copy algo-
rithms and compactify algorithms), or by providing sufficient register type
information similar to debugging information, or by ensuring that register
references are always somewhere on the stack (which can be surprisingly
subtle).

The garbage collector and compiler first need to coordinate at which
sites a function can be interrupted. Especially, whether the program has to
be interruptible by the garbage collector at every point in the control flow,
which requires exhaustive pointer identification information. The alterna-
tive is to agree on periodically occurring points of the program at which
garbage collection is safe. For instance, at all procedure calls and returns
and at all backward edges (from loops) in the control flow graph. Another
convention is to enforce a global partition of registers into pointer-only reg-
isters and nonpointer-only registers. Then the site information reduces to
function site information.

The most common choice is for the compiler to identify pointer types
by runtime information. The tricky part is that this can change at each pro-
gram location. For each possible site (especially function sites) we need a
pointer map describing the location of all live pointers in the register or on
the stack. Unfortunately, callee-save registers need special attention, be-

LECTURE NOTES



L21.6 Advanced Garbage Collection

cause the callee does not know if the values in the registers are pointers,
since that depends on who called. Consequently, the caller g needs to iden-
tify which of the register that its callee 2 will have to save are pointers, and
which of the registers may be a pointer, because it didn’t overwrite them,
depending on the callee-save registers of its own caller f (here f calls g calls
h). The best way to identify function sites themselves is indexed by return
address, because these are stored in the stack frame and can be found out
when walking the stack top down.

In single-threading programs, the problem simplifies a little bit, because
garbage collection will only occur when alloc is called, or when another
function is called (which could call alloc).

7 Derived Pointers

Garbage collection may interfere with code optimization. For example, if a
loop accesses a[i — 100] for all 7, then an optimizing compiler may compute
this address as

b + a-—100
m < b+i
v < M[m]

The compiler may even move the constant expression b <— a — 100 out of
the loop to avoid having to recalculate it every time. Yet, what do we tell
garbage collection about what b represents? Is it a pointer? Or is it not?
We can’t ignore it altogether if it’s the only location where we store the
address. We can’t just pretend it is a pointer either, because b itself is not
the base address of the object and will just point to a meaningless address.
Consequently, the pointer map will have to identify b as a derived pointer
and will need to name the displacement constant 100 so that the garbage
collector can readjust b to the appropriate base pointer b + ¢’ — a when it
relocates a to a different place ¢’ in memory during copy or compactify
garbage collectors. Otherwise, the derived pointer will be broken after a
relocating garbage collector run. In addition, we need to make sure that
the real base address a is still live even when only the derived pointer b is
used, because, otherwise, the garbage collector may be entirely confused
about where the object really starts.

For mark and free garbage collectors, the situation can be simplified, be-
cause addresses don’t change there. But this requires that the base pointer
is made live as long as any derived pointer is around.

LECTURE NOTES



Advanced Garbage Collection L21.7

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[Wil94] Paul R. Wilson. Uniprocessor garbage collection techniques. Sub-
mitted to ACM Computing Surveys, 1994.

LECTURE NOTES



	Introduction
	Generation Scavenging
	Garbage Collection Complexity
	Schorr-Waite Pointer-Reversal Marking Algorithm
	Incremental Garbage Collection on the Fly
	Interface to Compiler
	Derived Pointers

