
Lecture Notes on
Liveness Analysis

15-411: Compiler Design
Frank Pfenning∗

Lecture 4

1 Introduction

We will see different kinds of program analyses in the course, most of them
for the purpose of program optimization. The first one, liveness analysis, is
required for register allocation. A variable is live at a given program point
if it will be used during the remainder of the computation, starting at this
point. We use this information to decide if two variables may be mapped
to the same register, as detailed in the last lecture.

Is this decidable? Is liveness decidable? As many properties of pro-
grams, liveness is undecidable if the language we are analyzing is Turing-
complete. The approximation we describe here is standard, although its
presentation is not. Chapter 10 of the textbook [App98] has a classical pre-
sentation.

2 Liveness by Backward Propagation

Consider a 3-address instruction applying a binary operator ⊕:

x ← y ⊕ z

There are two reasons a variable may be live at this instruction. The first is
immediate: if a variable (here: y and z) is used at an instruction, it is used
in the computation starting from here. The second is slightly more subtle:

∗Edits by André Platzer

LECTURE NOTES



L4.2 Liveness Analysis

since we execute the following instruction next, anything we determine
is live at the next instruction is also live here. There is one exception to
this second rule: because we assign to x, the value of x coming into this
instruction does not matter (unless it is y or z), even if it is live at the next
instruction. In summary,

1. y and z are live at an instruction x← y ⊕ z.

2. u is live at x← y ⊕ z if u is live at the next instruction and u 6= x.

Similarly, for an instruction x ← c with a constant c, we find that u is
live at this instruction if u is live at the next instruction and u 6= x.

As a last example, x is live at a return instruction return x, and nothing
else is live there.

If we have a straight-line program, it is easy to compute liveness infor-
mation by going through the program backwards, starting from the return
instruction at the end. In that case, it is also precise rather than an approx-
imation. As an example, one can construct the set of live variables at each
line in this simple program bottom-up, using the two rules above.

x

Instructions Live-in Variables
x1 ← 1 ·
x2 ← x1 + x1 x1
x3 ← x2 + x1 x1, x2
y2 ← x1 + x2 x1, x2, x3
y3 ← y2 + x3 y2, x3
return y3 y3

For example, looking at the 4th line, we see that x1 and x2 are live because
of the first rule (they are used) and x3 is live because it is live at the next
instructions and different from y2.

3 Liveness Analysis in Logical Form

Before we generalize to a more complex language of instructions, we try
to specify the rules for liveness analysis in a symbolic form to make them
more concise and to avoid any potential ambiguity. For this we give each
instruction in a program a line number of label. If an instruction has label l,
we write l + 1 for the label of the next instruction.

We also introduce the predicate live(l, x) which should be true when
variable x is live at line l. We then turn the rules stated informally in English
into logical rules.

LECTURE NOTES



Liveness Analysis L4.3

l : x← y ⊕ z

live(l, y)
live(l, z)

L1

l : x← y ⊕ z
live(l + 1, u)
x 6= u

live(l, u)
L2

Here, the formulas above the line are premises of the inference rule and
the formulas below the line are the conclusions. If all premises are true,
we know all conclusions must be true. To the right of the line we write the
name of the inference rule. For example, we can read rule L1 as: “If line l
has the form x← y ⊕ z then y is live at l and z is live at l.”

This is somewhat more abstract than the backward propagation algo-
rithm because it does not specify in which order to apply these rules. We
can now add more rules for different kinds of instructions.

l : return x

live(l, x)
L3

l : x← c
live(l + 1, u)
x 6= u

live(l, u)
L4

If we only have binary operators, moves of constants into variables, and
return instructions, then these four rules constitute a complete specification
of when a variable should be live at any point in a program.

This specification also gives rise to an immediate, yet somewhat non-
deterministic implementation. We start with a database of facts, consisting
only of the original program, with each line properly labeled. Then we
apply rules in an arbitrary order — whenever the premises are all in the
database we add the conclusion to the database. Applying one rule may
enable the application of another rule and so on, but eventually this pro-
cess will not gain us any more information. At this point, we can still apply
rules but all conclusions are already in the database of facts. We say that
the database is saturated. Since the rules are a complete specification of our
liveness analysis, by definition a variable x is deemed lived at line l if and
only if the fact live(l, x) is in the saturated database.

This may seem like an unreasonable expensive way to compute live-
ness, but in fact it can be quite efficient, both in theory and practice.

In theory, we can look at the rules and determine their theoretical com-
plexity by (a) counting so-called prefix firings of each rule, and (b) bounding

LECTURE NOTES



L4.4 Liveness Analysis

the size of the completed database. We will return to prefix firings, a notion
due to McAllester [McA02], in a later lecture. Bounding the size of the com-
pleted database is easy. We can infer at most L · V distinct facts of the form
live(l, x), where L is the number of lines and V is the number of variables in
the program. Counting prefix firings does not change anything here, and
we get a theoretical complexity of O(L · V ) for the analysis so far.

In practice, we can implement logical rules more efficiently than tra-
ditional techniques by using Binary Decision Diagrams (BDD’s). Whaley,
Avots, Carbin, and Lam [WACL05] have shown scalability of global pro-
gram analyses using inference rules, transliterated into so-called Datalog
programs. Unfortunately, there is no Datalog library that we can easily tie
into our compilers, so while we specify and analyze the structure of our
program analyses via the use of inference rules, we generally do not imple-
ment them in this manner.

4 Loops and Conditionals

The nature of liveness analysis changes significantly when the language
permits loops. This will also be the case for most other program analyses.

Here, we add two new forms of instructions, and unconditional jump
l : goto l′, and a conditional branch l : if (x ? c) goto l′, where “?” is a
relational operator such as equality or inequality.

We now discuss how liveness analysis should be extended for these two
forms of instructions. A variable u is live at l : goto l′ if it is live at l′. This is
The only rule pertaining to goto and we capture this with the inference rule

l : goto l′

live(l′, u)

live(l, u)
L5

When executing a conditional branch l : if (x ? c) goto l′ we have
two potential successor instructions: we may go to the next l + 1 if the
condition is false or to l′ if the condition is true. In general, we will not be
able to predict at compile time whether the condition will be true or false
and usually it will sometimes be true and sometimes be false during the
execution of the program. Therefore we have to consider a variable live at
l if it is live at l + 1 or it is live at l. Also, the instruction uses x, so x is also

LECTURE NOTES



Liveness Analysis L4.5

live. Summarizing this as rules we obtain

l : if (x ? c) goto l′

live(l, x)
L6

l : if (x ? c) goto l′

live(l + 1, u)

live(l, u)
L7

l : if (x ? c) goto l′

live(l′, u)

live(l, u)
L8

These rules are straightforward enough, but if we have backwards branches
we will not be able to analyze in a single backwards pass. As an example
to illustrate this point, we will use a simple program for calculating the
greatest common divisor of two positive integers. We assume that at the
first statement labeled 1, variables x1 and x2 hold the input, and we are
supposed to calculate and return gcd(x1, x2).

x

Live variables,
Instructions initially

1 : if (x2 = 0) goto 8
2 : q ← x1/x2
3 : t← q ∗ x2
4 : r ← x1 − t
5 : x1 ← x2
6 : x2 ← r
7 : goto 1
8 : return x1

If we start at line 8 we see x1 is live there, but we can conclude nothing
(yet) to be live at line 7 because nothing is known to be live at line 1, the
target of the jump. After one pass through the program, listing all variables
we know to be live so far we arrive at:

x

Live variables,
Instructions after pass 1

1 : if (x2 = 0) goto 8 x1, x2
2 : q ← x1/x2 x1, x2
3 : t← q ∗ x2 x1, x2, q
4 : r ← x1 − t x1, x2, t
5 : x1 ← x2 x2, r
6 : x2 ← r r
7 : goto 1 ·
8 : return x1 x1

At this point, we can apply the rule for goto to line 7, once with variable
x1 and once with x2, both of which are now known to be live at line 1. We

LECTURE NOTES



L4.6 Liveness Analysis

list the variables that are now further to the right, and make another pass
through the program, applying more rules.

x

Live-in variables,
Instructions after pass 1 after pass 2 saturate

1 : if (x2 = 0) goto 8 x1, x2
2 : q ← x1/x2 x1, x2
3 : t← q ∗ x2 x1, x2, q
4 : r ← x1 − t x1, x2, t
5 : x1 ← x2 x2, r
6 : x2 ← r r x1
7 : goto 1 · x1, x2 (from 1)
8 : return x1 x1

At this point our rules have saturated and we have identified all the live
variables at all program points. From this we can now build the interfer-
ence graph and from that proceed with register allocation.

The algorithm which saturates the inference rules implies that a vari-
able is designated live at a given line only if we have definitive reason to
believe it might be live. Consider the program

1 : u1 ← 1
2 : y ← y ∗ x
3 : z ← y + y // z not used, redundant, still interference graph
4 : x← x− u1
5 : if (x > 0) goto 2
6 : return y

which has a redundant assignment to z in line 3. Since z is never used, z
is not found to be live anywhere in this program. Nevertheless, unless we
eliminate line 3 altogether, we have to be careful to note that z interferes
with x, u1, and y because those variables are live on line 4. If not, z might
be assigned the same register as x, y, or u1 and the assignment to z would
overwrite one of their values.

In the slightly different program

1 : u1 ← 1
2 : y ← y ∗ x
3 : z ← z + z // z live but never needed
4 : x← x− u1
5 : if (x > 0) goto 2
6 : return y

LECTURE NOTES



Liveness Analysis L4.7

the variable z will actually be inferred to be live at lines 1 through 5. This
is because it is used at line 3, although the resulting value is eventually
ignored. To capture redundancy of this kind is the goal of dead code elimi-
nation which requires neededness analysis rather than liveness analysis. We
will present this in a later lecture.

5 Refactoring Liveness

Figure 1 has a summary of the rules specifying liveness analysis.

l : x← y ⊕ z

live(l, y)
live(l, z)

L1

l : x← y ⊕ z
live(l + 1, u)
x 6= u

live(l, u)
L2

l : return x

live(l, x)
L3

l : x← c
live(l + 1, u)
x 6= u

live(l, u)
L4

l : goto l′

live(l′, u)

live(l, u)
L5

l : if (x ? c) goto l′

live(l, x)
L6

l : if (x ? c) goto l′

live(l + 1, u)

live(l, u)
L7

l : if (x ? c) goto l′

live(l′, u)

live(l, u)
L8

Figure 1: Summary: Rules specifying liveness analysis

This style of specification is precise and implementable, but it is rather
repetitive. For example, L2 and L4 are similar rules, propagating liveness
information from l + 1 to l, and L1, L3 and L6 are similar rules recording
the usage of a variable. If we had specified liveness procedurally, we would
try to abstract common patterns by creating new auxiliary procedures. But
what is the analogue of this kind of restructuring when we look at specifi-
cations via inference rules? The idea is to identify common concepts and

LECTURE NOTES



L4.8 Liveness Analysis

distill them into new predicates, thereby abstracting away from the indi-
vidual forms of instructions.

Here, we arrive at three new predicates.

1. use(l, x): the instruction at l uses variable x.

2. def(l, x): the instruction at l defines (that is, writes to) variable x.

3. succ(l, l′): the instruction executed after l may be l′.

Now we split the set of rules into two. The first set analyzes the program
and generates the use, def and succ facts. We run this first set of rules to
saturation. Afterwards, the second set of rules employs these predicates
to derive facts about liveness. It does not refer to the program instructions
directly—we have abstracted away from them.

We write the second program first. It translates the following two, in-
formally stated rules into logical language:

1. If a variable is used at l it is live at l.

2. If a variable is live at a possible next instruction and it is not defined
at the current instruction, then it is live at the current instruction.

use(l, x)

live(l, x)
K1

live(l′, u)
succ(l, l′)
¬def(l, u)
live(l, u)

K2

Here, we use ¬ to stand for negation. For this to be well-defined we need
to know that def does not depend on live. Any implementation must first
saturate the facts about def before applying any rules concerning liveness,
because the absence of a fact of the form def(l,−) does not imply that such a
fact might not be discovered in a future inference—unless we first saturate
the def predicate.

We return to the first set of rules. It must examine each instruction and
extract the use, def, and succ predicates. We could write several subsets of
rules: one subset to generate def, one to generate use, etc. Instead, we have
just one rule for each instruction with multiple conclusions for all required

LECTURE NOTES



Liveness Analysis L4.9

predicates.

l : x← y ⊕ z

def(l, x)
use(l, y)
use(l, z)
succ(l, l + 1)

J1
l : return x

use(l, x)
J2

l : x← c

def(l, x)
succ(l, l + 1)

J3

l : goto l′

succ(l, l′)
J4

l : if (x ? c) goto l′

use(l, x)
succ(l, l′)
succ(l, l + 1)

J5

It is easy to see that even with any number of new instructions, this specifi-
cation can be extended modularly. The main definition of liveness analysis
in rules K1 and K2 will remain unchanged and captures the essence of live-
ness analysis.

The theoretical complexity does not change, because the size of the
database after each phase is still O(L · V ). The only point to observe is
that even though the successor relation looks to be bounded by O(L · L),
there can be at most two successors to any line l so it is only O(L).

6 Control Flow

Properties of the control flow of a program are embodied in the succ relation
introduced in the previous section. The graph whose vertices are the lines
of the program with an edge between l and l′ whenever succ(l, l′) is true is
called the control flow graph. It captures the possible flows of control without
regard to the actual values that are passed.

For reference, a dataflow equation form of liveness analysis is shown in
Figure 2.

The textbook [App98] recommends an explicit representation of the
control flow graph, together with the use of basic blocks to speed up analy-
sis. A basic block is a simple fragment of straight-line code that is always
entered at the beginning and exited at the end. That is

• the first statement may have a label,

• the last statement terminates the control flow of the current block
(with a goto, conditional branch, or a return), and

LECTURE NOTES



L4.10 Liveness Analysis

· · ·
A◦(l1) A◦(l2)

A•(l)

A◦(l)

A•(l) =
⋃

l 7→li

A◦(li)

A◦(l) = (A•(l) \ kill (l)) ∪ gen(l)

A◦(final) = c

Statement l gen(l) kill(l)

final A•(final) = ∅
x← y ⊕ z {y, z} {x}
x← c ∅ {x}
goto l′ ∅ ∅
return x {x} ∅
if (x > c) goto l′ {x} ∅
l′ : ∅ ∅

Figure 2: Dataflow analysis for live-in A◦(l) and live-out A•(l) variables

• all other statements in between have no labels (entry points) and no
gotos or conditional branches (exit points).

From a logical perspective, basic blocks do not change anything, because
they just accumulate a series of simple statements into one compound code
block. Hence, it is not clear if a logical approach to liveness and other pro-
gram analyses would actually benefit from basic block representations. But
depending on the actual implementation technique, basic blocks can help
surprisingly much, because the number of nodes that need to be considered
in each analysis is reduced somewhat. Basic blocks are an example of an
engineering decision that looks like a no-op, but can still pay off. They are
also quite useful for SSA intermediate language representations and LLVM
code generation.

Control flow information can be made more precise if we analyze the
possible values that variables may take. Since control flow critically in-
fluences other analyses in a similar way to liveness analysis, it is almost
universally important. Our current analysis is not sensitive to the actual

LECTURE NOTES



Liveness Analysis L4.11

values of variables. Even if we write
l : x← 0
l + 1 : if (x < 0) goto l + 3
l + 2 : return y
l + 3 : return z // unreachable in this program due to values

we deduce that both y and z may be live at l + 1 even though only return y
can actually be reached. This and similar patterns may seem unlikely, but
in fact they arise in practice in at least two ways: as a result of other opti-
mizations and during array bounds checking. We may address this issue
in a later lecture.

7 Summary

Liveness analysis is a necessary component of register allocation. It can
be specified in two logical rules which depend on the control flow graph,
succ(l, l′), as well as information about the variables used, use(l, x), and de-
fined, def(l, x), at each program point. These rules can be run to saturation
in an arbitrary order to discover all live variables. On straight-line pro-
grams, liveness analysis can be implemented in a single backwards pass, on
programs with jumps and conditional branches some iteration is required
until no further facts about liveness remain to be discovered. Liveness anal-
ysis is an example of a backward dataflow analysis; we will see more analyses
with similar styles of specifications throughout the course.

Quiz

1. Can liveness analysis be faster if we execute it out of order, i.e., not
strictly backwards?

2. Is there a program where liveness analysis gives imperfect informa-
tion?

3. Is there a class of programs where this does not happen? What is the
biggest such class?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML.
Cambridge University Press, Cambridge, England, 1998.

LECTURE NOTES



L4.12 Liveness Analysis

[McA02] David A. McAllester. On the complexity analysis of static anal-
yses. Journal of the ACM, 49(4):512–537, 2002.

[WACL05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S.
Lam. Using Datalog and binary decision diagrams for program
analysis. In K.Yi, editor, Proceedings of the 3rd Asian Symposium
on Programming Languages and Systems (APLAS’05), pages 97–
118. Springer LNCS 3780, November 2005.

LECTURE NOTES


	Introduction
	Liveness by Backward Propagation
	Liveness Analysis in Logical Form
	Loops and Conditionals
	Refactoring Liveness
	Control Flow
	Summary

