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1 Introduction

Several optimizations are easier to perform on SSA form, because SSA
needs less analysis. In this lecture we discuss some dataflow analysis tech-
niques that are needed to lift optimizations to non-SSA form. We also dis-
cuss postoptimization.

Some of what is covered in these notes is explained in [App98, Chapters
17.2-17.3]. A canonical reference on optimizing compilers is the book by
[Muc97], which also contains a brief definition of SSA.

2 Normalization

Normalizing transformations do not optimize the program itself but help
subsequent optimizations find more syntactically identical expressions. They
use algebraic laws like associativity and distributivity. Their use is gener-
ally restricted by definitions of the evaluation order (for Java), by the ex-
ception order (Java, Eiffel), or by the limitations of floating-point arithmetic
(which is neither associative nor distributive).

A simple normalization is to use commutativity a + b = b + a. But we
could use this equation in both directions? Which one do we use? If we use
it arbitrarily then we may still miss identical expressions. Instead, we fix
an order that will always normalize expressions. We first fix an order < on
all operators. For instance, the order in which we constructed the various
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expressions during SSA construction. And then we order commutative op-
erations so that the small operand (with respect to the order <) comes first:

a+b b—<aC axb b=<a

Cy
b+a * bxa

How do we use distributivity a * (b + ¢) = (a * b) + (a * ¢)? Again we
need to decide in which direction we use it. This time we have to fix an
order on the operators. Let us fix * < 4 and use

axb+axc *<+
ax(b+c)

But here we already have to think carefully about overflows. The operation
b 4+ ¢ might overflow the data range even if a * b + a * ¢ does not (e.g.,
for a = 0). On an execution architecture where range overflows trigger
exceptions, using distributivity might be unsafe. When we strictly stick to
modular arithmetic, however, distributivity is safe.

3 Reaching Expressions

The optimizations above have been presented for SSA intermediate repre-
sentations, where syntactical identity is the primary criterion for semantical
equivalence of terms and where def-use relations are represented explicitly
in the SSA representation. So we are done with those optimizations as far
as SSA is concerned.

For non-SSA, this is not so easy, because we explicitly have to com-
pute all required information by static analysis. We have already seen how
reaching definitions can be computed in a previous lecture on dataflow
analysis.

Reaching expressions analysis is very similar to reaching definitions
analysis from the dataflow analysis lecture. The difference is essentially
that we do not care so much about the variable in which an expression has
been stored, but only if the expression could have been computed before
already. We say that the expression a ® bat ! : x < a ® b reaches a line I’ if
there is a path of control flow from [ to I’ during which no part of a ® b is
redefined. In logical language:

e reaches(l,a ® b,1’) if the expression a ® b at [ reaches ['.
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We only need two inference rules to defines this analysis. The first states
that an expression reaches any immediate successor. The second expresses
that we can propagate a reaching expression to all successors of a line I’ we
have already reached, unless this line also defines a part of the expression.

reaches(l,a ® b,1")
succ(l’,1")

l:z+a®b —def(I', a)
succ(l, 1) —def (I, b)
REl 2
reaches(l,a ® b,1") reaches(l,a ® b,1")

Reaching expression analysis is only needed for a small subset of all
expressions during CSE. Thus, it is usually not performed exhaustively but
only selectively as needed for some expressions.

4 Available Expressions

Another analysis that is not obvious except for SSA representations is that
of available expressions. Reaching expressions capture the expressions by
static analysis that could possibly reach a node. But it is not certain that
they will, so we cannot always rely on the expression being available un-
der all circumstances. This is what available expressions analysis captures.
Which expressions are available at a point no matter what control path has
been taken before.

An expression a ® b is available at a node £ if, on every path from the
entry to k, the expression a ® b is computed at least once and no subex-
pression of a ® b has been redefined since the last occurrence of a ® b on
the path. There is a crucial difference to all the dataflow analyses that we
have seen in class before. For available expressions we are not interested in
what information may be preserved from one location to another because at
least one control path provides it (may analysis). We are interested in what
information must be preserved on all control paths reaching the location so
that we can rely on it being present (must analysis).

Unfortunately, must analysis is a tricky match for logic rules, because
that keeps adding information, but we cannot (easily) talk about negations.
What we would have to say is something like

—=3l"(succ(lp, 1) A —avail(lp,a ® b))

?
avail(l,a ® b)
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This can still be expressed with logic rules, but it is much more complicated
to use them in the right way. We have to saturate appropriately before we
interpret negations.

Alternatively, we use a representation of available expression analysis
by dataflow equations. We follow the dataflow schema shown in Figure 1
using the definitions from Table 1.

Au(l) = (Ao (D) \ Kill(1)) U gen(l)

Figure 1: Dataflow analysis schema for available expressions

Table 1: Dataflow analysis definitions for available expressions

Statement | gen(l) kall(l)

init Aq(init) =0

r—a®b {a ® b} \ kill(l) {e : e contains z}

T < *xa {*xa} \ kill(]) {e : econtains =}

*a <— b 0 {*z : forall z}

goto !’ 0 0

if a > b goto I' 0 0

U 0 0

x <+ f(p1,---,pn) 0 {e : e contains z or any *z}

5 Peephole Optimization

One of the simple-most optimizations is peephole optimization by McKee-
man from 1965 [McK65]. Peephole optimization is a postoptimization in
the backend after /during instruction selection has been performed. It is an
entirely local transformation. The basic idea is to move a sliding peephole,
usually of size 2, over the instructions and replace this pair of instructions
by cheaper instructions. After precomputing cheaper instruction sequences
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for the set of all pairs of operations, a simple linear sweep through the in-
structions is used to optimize each pair. The matter is a little more involved
in the case of conditional jumps, where both possible target locations need
to be considered. Peephole optimization can be quite useful for CISC archi-
tectures to glue code coming originally from independent AST expressions
or to use fancy address modes. For instance, there are address modes that
combine
afilyi++ ~  ali++]

Typical peephole optimizations include

store R, a; load a,R ~ storeR,a superfluous load

imul 2, R ~~ ashl 2,R multiplication by constant
iadd x,R; comp O,R ~ dadd x, R superfluous comparisons

if b then x:=y ~s  ti=b; x:=(t)y IA-64 predicated assignment

The major complication with peephole optimization is its mutual de-
pendency with other instruction selection optimizations like pipeline opti-
mization. Peephole optimization should be done before instruction selec-
tion for pipeline optimization but it cannot be done without instructions
having been selected. Other than that, it can lead to globally suboptimal
choices, because it is a local optimization. The fact that it is an entirely local
transformation, however, makes it easy to implement. Its limit is that it has
only a very narrow and local view of the program.

Postoptimizations can be fairly crucial. A strong set of postoptimiza-
tions can in fact lead to a lot more than 10% performance improvement. A
few compilers only use postoptimizations (e.g., lcc). Unfortunately, postop-
timizations are often quite processor dependent and not very systematic.
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