Lecture Notes on
Basic Optimizations

15-411: Compiler Design
André Platzer

Lecture 14
October 12, 2010

1 Introduction

Several optimizations are easier to perform on SSA form, because SSA
needs less analysis. Some optimizations can even be built into SSA con-
struction. Advanced optimizations need advanced static analysis techniques
on IR trees and SSA.

Some of what is covered in these notes is explained in [App98, Chapters
17.2-17.3]. A canonical reference on optimizing compilers is the book by
[Muc97], which also contains a brief definition of SSA.

2 Constant Folding

The idea behind constant folding is simple but successful. Whenever there
is a subexpression that only involves constant operands then we precom-
pute the result of the arithmetic operation during compilation and just use
the result. That is, whenever we find a subexpression n; ® ns for concrete
number constants ni, ny and some operator ©, we compute the numerical
result n of the expression n; ® ny and use n instead. Let us say this subex-
pression occurs in an assignment = = n; ® ng, which, for clarity, we write
T < n1 ® ng here.

T nNLO®ng n1ONe=n

r<n

For that, of course, we have to be careful with the arithmetical semantic of
the target language. That is especially for expressions that raise an overflow

LECTURE NOTES OCTOBER 12, 2010

L14.2 Basic Optimizations

or division by zero error. Large expressions with constant operands seldom
occur in source code. But around 85% of constant folding comes from code
generated by address arithmetic. Constant folding also becomes possible
after other optimizations have been performed like constant propagation.

More advanced constant folding proceeds across basic blocks and takes
SSA ¢ functions into account. For instance, if we have an expression in SSA
that, after constant propagation, is of the form n; ® ¢(ng, n3) for some op-
erator ® and numerical constants n1, ny, ng then we can perform constant
folding across ¢:

x4 n1 O P(ng,n3) nizg=n1Ong niz=n; Ong

CF,
z < ¢(ni2,n13)

3 Inverse Operations

Another optimization is to delete inverse operations, e.g., for unary minus:

—(—a)

a

Inv

Again, inverse operators seldom occur in source code but may still arise
after other optimizations have been used.

4 Common Subexpression Elimination (CSE)

The goal of common subexpression elimination (CSE) is to avoid repetitive
computation for subexpressions that occur repeatedly. Common subex-
pressions occur very frequently in address arithmetic or in generated source
code. Studies show, for instance, that 60% of all arithmetic is address arith-
meticin PL/1 programs. A source code expression a.z = a.x+1 for instance
yields intermediate code with duplicate address arithmetic

tl = a + offsetx;
t2 = a + offsetx;
*t2 = *xtl + 1;

If two operations always yield the same result then they are semanti-
cally equivalent. In SSA, if two expressions e, ¢’ are syntactically identical
(i.e., the same operators and the same operands) then they are semantically

LECTURE NOTES OCTOBER 12, 2010

Basic Optimizations L14.3

equivalent. Beware, however, that this is not the case in other intermedi-
ate representations, where static analysis is still necessary to determine if
the same operands still hold the same values or may already hold different
ones. In SSA we get this information for free from the property that each
location is (statically) only assigned once. Thus, wherever it is available, it
holds the same value.

Consequently, in SSA form, for syntactically identical subexpressions
e, ¢’ we can remove the computation ¢’ and just store and use the result of
e if e dominates ¢’ (otherwise the value may not be available).

Therefore, what we need to do to implement CSE on SSA is the follow-
ing. For each subexpression e of the form a ® b for some operator © at
an SSA node k, we need to find all SSA nodes £’ that have the subexpres-
sion e. The canonical way to solve this is to maintain a hash table for all
expressions and lookup each expression e in it. If we are at node £’ with
expression e and the hash table tells us that expression e occurs at a node k&
and k dominates £’ then we reuse the value of e from k at &'

for each node k of the form a ® b do
look up a ® b in hash table
if node j found in hash table that dominates k then
use result from J instead of a ® b in k
else
leave k as is and put a ® b into hash table

Note that the effect of “use result of j” may depend on the choice of the SSA
intermediate representation. For arbitrary SSA representations, the value
of an arbitrary subexpression a ® b may have to be stored into a variable at
the dominator j in order to even be accessible at k.

For an SSA representation that only allows one operation for each of
the instructions (within a basic block), this is simpler. That is, consider an
SSA representation where basic blocks only allows operations of the form
x = a © b for an operator ® and variables (but not general expressions)
a and b, then only top-level common subexpressions need to be identified
and their values will already have been stored in a variable. To illustrate,
suppose we are looking at a basic block in which one of the instructions
is y7 = a © b for variables a, b then we only need to look for instructions
of the form x = a ® b Thus, if z5 = a ® b is one of the instructions in a
node j that dominates k, then all we need to do to “use result of j” at k is
to replace y7 = a ©® b in k by y7 = x5, which, in turn will be eliminated by
copy propagation or value numbering.

LECTURE NOTES OCTOBER 12, 2010

L14.4 Basic Optimizations

The CSE algorithm can also be integrated into the SSA construction,
because the construction will yield all dominators of k before k (see SSA
lecture). Combining CSE with SSA construction also reduces the storage
complexity of the SSA graph. Finally, it helps using normalizing transfor-
mations like commutativity and distributivity before CSE.

For non-SSA form, we also have to be extra careful that the variables in
the subexpression must always still hold the same value. And we need to
store the subexpression in a temporary variable, when the other target may
possibly be overwritten.

5 Constant propagation

Constant propagation propagates constant values of expressions like 3 =
5 to all dominated occurrences of x2. That is we just substitute x5 = 5 into
all dominated occurrences of x2. In non-SSA form, extra care needs to be
taken that the value of x5 cannot be different at the occurrence. Constant
propagation is somewhat similar to CSE where the operator © is just the
constant operator (here 5) that does not take any arguments. It is usually
implemented either using the CSE hash tables or implicitly during SSA
construction.

For non-SSA we also need to be careful that no other definition of x-
may possibly reach the statement and that the o = 5 definition surely
reaches the statement without being overwritten (possibly maybe).

6 Copy propagation

Copy propagation propagates values of copies like 22 = y,4 to all dominated
occurrences of x9. That is we just substitute x5 = y4 into all dominated oc-
currences of zo. In non-SSA form, extra care needs to be taken that the value
of x5 cannot be different at the occurrence. Constant propagation is some-
what similar to CSE where the operator © is just the identity operator that
only takes one argument. It is usually implemented either using the CSE
hash tables or implicitly during SSA construction. The register coalescing
optimization during register allocation is a form of copy propagation.

For non-SSA we also need to be careful that no other definition of x5
may possibly reach the statement and that the o = y, definition surely
reaches the statement without being overwritten (possibly maybe) and that
no definition of y4 may possibly reach the statement.

LECTURE NOTES OCTOBER 12, 2010

Basic Optimizations L14.5

7 Normalization

Normalizing transformations do not optimize the program itself but help
subsequent optimizations find more syntactically identical expressions. They
use algebraic laws like associativity and distributivity. Their use is gener-
ally restricted by definitions of the evaluation order (for Java), by the ex-
ception order (Java, Eiffel), or by the limitations of floating-point arithmetic
(which is neither associative nor distributive).

A simple normalization is to use commutativity a + b = b + a. But we
could use this equation in both directions? Which one do we use? If we use
it arbitrarily then we may still miss identical expressions. Instead, we fix
an order that will always normalize expressions. We first fix an order < on
all operators. For instance, the order in which we constructed the various
expressions during SSA construction. And then we order commutative op-
erations so that the small operand (with respect to the order <) comes first:

a+b b<a axb b=<a
— Cy — C,
b+a bxa
How do we use distributivity a * (b + ¢) = (a * b) + (a * ¢)? Again we
need to decide in which direction we use it. This time we have to fix an
order on the operators. Let us fix * < 4+ and use

axb+axc *x<+
ax(b+c)

But here we already have to think carefully about overflows. The operation
b + ¢ might overflow the data range even if a * b + a * ¢ does not (e.g.,
for a = 0). On an execution architecture where range overflows trigger
exceptions, using distributivity might be unsafe. When we strictly stick to
modular arithmetic, however, distributivity is safe.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[Muc97] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

LECTURE NOTES OCTOBER 12, 2010

	Introduction
	Constant Folding
	Inverse Operations
	Common Subexpression Elimination (CSE)
	Constant propagation
	Copy propagation
	Normalization

