
15-411 Compiler Design: Lab 2

Fall 2010

Instructor: Andre Platzer
TAs: Anand Subramanian and Nathan Snyder

Test Programs Due: 11:59pm, Tuesday, September 21, 2010
Compilers Due: 11:59pm, Tuesday, September 28, 2010

1 Introduction

The goal of the lab is to implement a complete compiler for the language L2 . This language extends
L1 by conditionals, loops, and some additional operators. This means you will have to change all
phases of the compiler from the first lab. One can write some interesting iterative programs over
integers in this language. Correctness is still paramount, but performance starts to become a minor
issue because the code you generate will be executed on a set of test cases with preset time limits.
These limits are set so that a correct and straightforward compiler without optimizations should
receive full credit.

2 Requirements

As for Lab 1, you are required to hand in test programs as well as a complete working compiler that
translates L2 source programs into correct target programs written in x86-64 assembly language.
When encountering an error in the input program (which can be a lexical, grammatical, or static
semantics error) the compiler should terminate with a non-zero exit code and print a helpful error
message. To test the target programs, we will assemble and link them using gcc on the lab machines
and run them under fixed but generous time limits.

3 L2 Syntax

The concrete syntax of L2 is based on ASCII character encoding of source code.

3.1 Lexical Token

L2 source files are tokenized into the tokens listed in figure 1. The L2 grammar does not necessarily
accept all the tokens produced upon tokenizing source code. However, the additional tokens will
remain in the lexical specification to maintain forward compatibility with future labs and C0.
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ident ::= [A-Za-z_][A-Za-z0-9_]*

num ::= 〈decnum〉 | 〈hexnum〉

〈decnum〉 ::= 0 | [1-9][0-9]*

〈hexnum〉 ::= 0[xX][0-9a-fA-F]+

〈special characters〉 ::= ! ~ - + * / % << >>

< > == != & ^ | && ||

= += -= *= /= %= <<= >>= &= |= ^=

-> . -- ++ ( | ) [ ] ;

〈reserved keywords〉 ::= struct typedef if else while for continue break

return assert true false NULL alloc alloc_array

int bool void char string

Terminals referenced in the grammar are in bold. Other classifiers not referenced within the
grammar are in 〈angle brackets and in italics〉. ident, 〈decnum〉 and 〈hexnum〉 are described using
regular expressions.

Figure 1: Lexical Tokens

Whitespace and Token Delimiting

In L1 , whitespace is either a space, tab (\t), linefeed (\n), carriage return (\r) or formfeed (\f)
character in ASCII encoding. Whitespace is ignored, except that it delimits tokens. Note that
white space is not a REQUIREMENT to terminate a token. For instance, () should be tokenized
into a left parenthesis followed by a right parenthesis according to the given lexical specification.
However, white space delimiting can disambiguate two tokens when one of them is present as a
prefix in the other. For example, += is one token, while + = is two tokens. The lexer should produce
the longest valid token possible. For instance, -- should be lexed as one token, not two.

Comments

L1 source programs may contain C-style comments of the form /* ... */ for multi-line comments
and // for single-line comments. Multi-line comments may be nested (and of course the delimiters
must be balanced). Also, # should be considered as starting a single-line comment as such lines
will be used as directives for testing and possibly other uses later in the class.

Reserved Keywords

main shall also be treated as a keyword in addition to those listed in figure 1, since the language
has no other concept of functions or function names.

3.2 Grammar

The syntax of L2 is defined by the context-free grammar in Figure 2. Ambiguities in this grammar
are resolved according to the operator precedence table in Figure 3 and the rule that an else

provides the alternative for the most recent eligible if.
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〈program〉 ::= int main () 〈block〉

〈block〉 ::= { 〈decls〉 〈stmts〉 }

〈type〉 ::= int | bool

〈decls〉 ::= ε | 〈decl〉 〈decls〉

〈decl〉 ::= 〈type〉 ident ; | 〈type〉 ident = 〈exp〉 ;

〈stmts〉 ::= ε | 〈stmt〉 〈stmts〉

〈stmt〉 ::= 〈simp〉 ; | 〈control〉 | ; | 〈block〉

〈simp〉 ::= ident 〈asop〉 〈exp〉 | ident 〈postop〉

〈simpopt〉 ::= ε | 〈simp〉

〈esleopt〉 ::= ε | else 〈stmt〉

〈control〉 ::= if ( 〈exp〉 ) 〈stmt〉 〈elseopt〉 | while ( 〈exp〉 ) 〈stmt〉

| for ( 〈simpopt〉 ; 〈exp〉 ; 〈simpopt〉 ) 〈stmt〉

| continue; | break; | return 〈exp〉 ;

〈exp〉 ::= ( 〈exp〉 ) | 〈intconst〉 | true | false | ident

| 〈unop〉 〈exp〉 | 〈exp〉 〈binop〉 〈exp〉 | 〈exp〉 ? 〈exp〉 : 〈exp〉

〈intconst〉 ::= num (in the range 0 ≤ num < 232)

〈asop〉 ::= = | += | -= | *= | /= | %= | &= | ^= | |= | <<= | >>=

〈binop〉 ::= + | - | * | / | % | < | <= | > | >= | == | !=

| && | || | & | ^ | | | << | >>

〈unop〉 ::= ! | ~ | -

〈postop〉 ::= ++ | --

The precedence of unary and binary operators is given in Figure 3. Non-terminals are in 〈angle
brackets〉. Terminals are in bold. The absence of tokens is denoted by ε.

Figure 2: Grammar of L2
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Operator Associates Meaning

() n/a explicit parentheses

! ~ - ++ -- right logical not, bitwise not, unary minus, increment, decrement

* / % left integer times, divide, modulo

+ - left integer plus, minus

<< >> left (arithmetic) shift left, right

< <= > >= left integer comparison

== != left overloaded equality, disequality

& left bitwise and

^ left bitwise exclusive or

| left bitwise or

&& left logical and

|| left logical or

? : right conditional expression

= += -= *= /= %=

&= ^= |= <<= >>= right assignment operators

Figure 3: Precedence of operators, from highest to lowest
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4 L2 Elaboration

As the name is intended to suggest, Elaboration is the process of elaborating the grammar that we
have to one that is simpler and more well behaved – the abstract syntax. We describe elaboration
separately because it is logically intended as a separate pass of compilation that happens immediate
after parsing. Unfortunately, justifying the way we choose to elaborate a language may depend
on an intuitive understanding of the operational behavior of the concrete language. Therefore, we
recommend that you check what you see in this section against the description of the static and
dynamic semantics of L2 that appear in the next two sections.

Your implementation may of course employ a different elaboration strategy —but we will rely
on the following elaboration strategy extensively in the description of the static semantics, and your
implementation must behave in an equivalent manner. As always, document any design decisions
you make.

We propose the following tree structure as the abstract syntax for statements s:

s ::= assign(x, e) | if(e, s, s) | while(e, s) | for(s, e, s, s)
| continue | break | return(e)
| nop | seq(s, s) | declare(x, t, s)

where e stands for an expression, x for an identifier, and t for a type. Do not be confused by the
fact that this looks like a grammar: the terms on the right hand side describe trees, not strings.
The whole program is represented here as a single statement s, because a sequence of statements
{s1; s2; . . .} is represented as a single statement seq(s1, seq(s2, . . .)). In an implementation it may
be more convenient to use lists explicitly.

Here are the suggested inference rules to elaborate blocks to trees:

{}; nop

statement ; s {remaining body}; s′

{statement; remaining body}; seq(s, s′)

{remaining body}; s′

{τx; remaining body}; declare(x, τ, s′)

e; e′ {remaining body}; s′

{τx = e; remaining body}; declare(x, τ, seq(assign(x, e′), s′))

Please check these elaboration rules against the scoping rules given in the static semantics.

As can be seen from the syntax, if statements always have both a “then” branch and an “else”
branch represented by the two statements in that order. For loops have the “initializer” statement,
the conditional expression, the “step” statment, and the loop body in that order. Elaborating if,
else, while, for, break, continue and return should be fairly straightforward, and we do not give any
rules for them.

As in L1 assignment statements of the form a op= b are elaborated to be equivalent to
a = a op b. In addition, a++ is equivalent to a = a + 1 and a-- is equivalent to a = a - 1.

Unlike statements, expressions are already in a compact and well behaved representation. We
only elaborate the logical operators. a && b elaborates to a ? b : false, and a || b elaborates
to a ? true : b.
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5 L2 Static Semantics

5.1 Type Checking

Since our grammar and our type system have become a little more interesting, we now give some
rules for type-checking. These rules are fairly informal. You may be interested in the material
covered in 15-312 and 15-317 if you wish to understand the techniques used to formally treat type
systems.

Type-checking Statements v. Type-checking Expressions

Our grammar allows expressions to appear with statements, but there is no way to embed state-
ments within expressions. As a consequence it is meaningful to have a judgment of the form
“e : τ” to convey that an expression e has the type τ , but the same is meaningless when discussing
statements. Therefore, for statements, we have the judgment “svalid”.

Variable Declarations and Contexts

As in L1 variables need to be declared with their types before they can be used. Unlike in L1 ,
declaration can appear at the beginning of any block. The declaration of a variable is not visible
outside the block of its declaration. Note that variables declared in inner blocks do not shadow
variables declared in enclosing scopes. Therefore, multiple declarations of the same identifier may
be present in the body of main if and only if no two of them are visible within the same block.

The abstract syntax for declarations, i.e. declare(x, t, s) is very convenient for capturing all these
phenomena and specifying the rules of type-checking. Here, the declaration of x of type t is visible
only to statement s, and your elaborator should take care to elaborate statements while correctly
preserving the lexical scope of declarations. Making the scope explicit in the abstract syntax makes
it easy for you to build up a context of variables declarations available while type-checking any
particular statement or expression.

We say “Γ ` e : τ” to express that an expression e is type-checked under the context Γ which
keeps track of all declarations of variables and their types. The following inference rules demonstrate
the function of the context.

x : τ ∈ Γ
Γ ` x : τ

x : τ ′ 6∈ Γfor anyτ ′ Γ, x : τ ` s valid

Γ ` declare(x, τ, s) valid

Here, x stands for any identifier.

The types

int is no longer the only type. We have bool which is inhabited by true and false. L2 (and
C0) do not allow implicit or explicit coercion between integral and boolean values. This is a major
point of departure from C and other (in)famous languages.
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Statements

We have already explained how declarations work. Here are the remaining significant rules.

Γ ` e : bool Γ ` s1 valid Γ ` s2 valid

Γ ` if(e, s1, s2) valid
Γ ` e : bool Γ ` s valid

Γ ` while(e, s) valid

Γ ` e : bool Γ ` s1 valid Γ ` s2 valid Γ ` s3 valid

Γ ` for(s1, e, s2, s3) valid

Γ ` x : τ Γ ` e : τ
Γ ` assign(x, e) valid

Γ ` s1 valid Γ ` s2 valid

Γ ` seq(s1, s2) valid
Γ ` e : int

Γ ` return(e) valid

The rule for return statements is still very rudimentary because we have only one function in
the program, and it is required to return an int. The remaining statements always have a valid
type structure.

Expressions

The following are the rules to check expressions for type correctness.

Γ ` true : bool Γ ` false : bool Γ ` intconst : int

Γ ` e1 : int Γ ` e2 : int relop ∈ {<,≤, >,≥}
Γ ` e1 relop e2 : bool

Γ ` e1 : τ Γ ` e2 : τ polyeq ∈ {==, ! =}
Γ ` e1 polyeq e2 : bool

Γ ` e1 : bool Γ ` e2 : bool logop ∈ {&&, ||}
Γ ` e1 logop e2 : bool

Γ ` e : bool
Γ ` ! e : bool

Note that in a type theoretic sense, equality and disequality are Overloaded Operators, not
polymorphic operators. See the dynamic semantics to see how the implementation is affected.

Γ ` e1 : int Γ ` e2 : int
Γ ` e1 binop e2 : int

Γ ` e : int
Γ ` unop e : int

Here, binop and unop are all the remaining binary and unary operators in the grammar not
covered by the rules for booleans.

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` (e1 ? e2 : e3) : τ
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5.2 Control Flow

Regarding control flow, several properties must be checked.

• Each (finite) control flow path through the program must terminate with an explicit return
statement. This ensures that the program does not terminate with an undefined value.

• Each break or continue statement must occur inside a while or for loop.

Regarding variables, we need to check one property.

• On each control flow path through the program, each variable must be defined by an as-
signment before it is used. This ensures that there will be no references to uninitialized
variables.

We define these checks more rigorously on the abstract syntax as follows.

Checking Proper Returns

We check that all finite control flow paths through a program end with an explicit return statement.
We say that s returns if, every execution of s that terminates will always end with a return
statement. Overall, we want to ensure that the whole program, represented as a single statement
s, returns according to this definition. If not, the compiler must signal an error.

declare(x, t, s) returns if s returns
assign(x, e) does not return
if(e, s1, s2) returns if both s1 and s2 return
while(e, s) does not return
for(s1, e, s2, s3) does not return
return(e) returns
nop does not return
seq(s1, s2) returns if either s1 returns (and therefore s2 is dead code) or s2 returns

We do not look inside loops (even though the bodies may contain return statements) because the
body might not be executed at all, or might terminate by a break, not a return. Because we do
not look inside loops, we do not need rules for break or continue.

Checking Variable Initialization

We wish to give a well formed deterministic dynamic semantics to L1 . A program should either
return a value, raise a divide-by-zero exception or fail to terminate. In order to do this, our static
semantics must enforce the following necessary condition: we need to check that along all control
flow paths, any variable is defined before use. Since the language allows the nesting of scopes
of declaration, we define the variable initialization property as a local property of a scope which
is actually stronger than the guarantee we need to make in order to give a well-formed dynamic
semantics to the entire program.

To further streamline the specification, we transform For loops as follows:

for(initializer, e, step, body)→ seq(initializer,while(e,bodystep)
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Here, bodystep is body with step inserted before every occurrence of continue that doesn’t
fall within the scope of an inner loop, and at the very end of the loop body. Check the dynamic
semantics and make sure you understand why this transformation preserves those semantics. You
may also find it an interesting exercise to consider what would go wrong if you were to include this
transformation in the elaborator.

Your implementation may be more efficient if you convert while loops to for loops instead.

First, we specify when a statement s defines a variable x. We read this as: Whenever s finishes
normally, it will have defined x. This excludes cases where s returns, executes a break or continue
statement, or does not terminate.

declare(x, t, s) defines no variable
assign(x, e) defines only x
if(e, s1, s2) defines x if both s1 and s2 define x
while(e, s) defines no x (because the body may not be executed)
break defines all x within scope (because it transfers control out of the scope)
continue defines all x within scope (because it transfers control out of the scope)
return(e) defines all x within scope (because it transfers control out of the scope)
nop defines no x
seq(s1, s2) defines x if either s1 or s2 does

We also say that an expression e uses a variable x if x occurs in e. In our language, e may have
logical operators which will not necessarily evaluate all their arguments, but we still say that a
variable occurring in such an argument is used, because it might be.

We now define which variables are live in a statement s, that is, their value may be used in the
execution of s.

y is live in declare(x, t, s) if y is live in s and y is not the same as x
y is live in assign(x, e) if y is used in e
y is live in if(e, s1, s2) if y is used in e or live in s1 or s2
y is live in while(e, s) if y is used in e or live in s
y is live in break never (the jump target is accounted for elsewhere)
y is live in continue never (the jump target is accounted for elsewhere)
y is live in return(e) if y is used in e
y is live in nop never
y is live in seq(s1, s2) if y is live in s1

or y is live in s2 and not defined in s1

Since scopes are encoded as declare statements, the given strategy has also told us what variables
are live at the beginning of a scope, i.e. not initialized before its first use. Static analysis should
reject a program if for any declare(x, t, s), the variable x is live in s.

The following example demonstrates how our static analysis is sufficient to guarantee determin-
istic evaluation:

{ int x; int y; return 1; x = y + 1; }

is valid because the statement x = y + 1 can not be reached along any control flow path from
the beginning of the program. Formally, the statement return 1 is taken to define all variables,
including y, so that y is not live in the whole program even though it is live in the second statement.
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The following example demonstrates how our static analysis is stronger than a sufficient condi-
tion to guarantee deterministic evaluation:

{ int x; return 1; { int y; x = y + 1; } }

We can still give a well formed dynamic semantics for the program. However, static analysis will
raise an error because the following block is not well formed:

{ int y; x = y + 1; }

Make sure that you have checked that all control flow paths return and all occurrences of break
and continue are inside loops before checking for variable initialization. Otherwise, the effect
that these statements have on liveness may produce very unhelpful and cryptic error messages for
ill-formed programs.

6 L2 Dynamic Semantics

In most cases, statements have the familiar operational semantics from C. Conditionals, for, and
while loops execute as in C. continue skips the rest of the statements in a loop body and break

jumps to the first statement after a loop. As in C, when encountering a continue inside a for

loop, we jump to the step statement. The suggested method of elaboration reflects this behavior.
Both break and continue always apply to the innermost loop they occur in.

The ternary operator (?:), as in C, must only evaluate the branch that is actually taken.
The suggested elaboration of the logical operators to the ternary operator also reflect their C-like
short-circuit evaluation.

Runtime Environment

As in the first lab, your target code will be linked against a very simple runtime environment.
It contains a function main() which calls a function _l2_main() that your assembly code should
provide and export. This function should return a value in %eax or raise an exception, according to
the language specification. It must also preserve all callee-save registers so that our main function
can work correctly. Your compiler will be tested in the standard Linux environment on the lab
machines; the produced assembly must conform to this environment.

To maintain interoperability with the ABI for C on linux, bools should be given an underlying
32 bit integer representation with false mapping to 0 and true mapping to 1. This runtime detail
should in no way be visible in L2 itself.

Integer Operations

Since expressions do not have effects (except for a possible div exception that might be raised) the
order of their evaluation is irrelevant.

The integers of this language are signed integers in two’s complement representation with a
word size of 32 bits. The semantics of the operations is given by modular arithmetic as in L1 .
Recall that division by zero and division overflow must raise a runtime division exception. This is
the only runtime exception that should be possible in the language, except for those defined by the
runtime environment such as stack overflow.
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The left << and right >> shift operations are arithmetic shifts. Since our numbers are signed,
this means the right shift will copy the sign bit in the highest bit rather than filling with zero. Left
shifts always fill the lowest bit with zero. Also, the shift quantity k will be masked to 5 bits and is
interpreted positively so that a shift is always between 0 and 31 bits, inclusively. This is also the
hardware behavior of the appropriate arithmetic shift instructions on the x86-64 architecture and
is consistent with C where the behavior is underspecified.

The comparison operators <, <=, >, and >=, have their standard meaning on signed integers as
in the definition of C. Operators == and != are overloaded operators that test for the equality of
either a pair of ints or a pair of bools. Fortunately, since the two types have the same underlying
representation in our runtime, these operators only need to be implemented once each.

7 Project Requirements

For this project, you are required to hand in test cases and a complete working compiler for L2
that produces correct target programs written in Intel x86-64 assembly language. When we grade
your work, we will use the gcc compiler to assemble and link the code you generate into executables
using the provided runtime environment on the lab machines.

Test Files

Test files should have extension .l2 and start with one of the following lines

#test return i program must execute correctly and return i
#test exception n program must compile but raise runtime exception n
#test error program must fail to compile due to a L2 source error

followed by the program text. If the exception number n is omitted, any exception is accepted. All
test files should be collected into a directory test/ (containing no other files) and submitted via
the Autolab server.

We would like some fraction of your test programs to compute “interesting” functions on specific
values; please briefly describe such examples in a comment in the file. Disallowed are programs
computing Fibonacci numbers, factorials, greatest common divisors, and minor variants thereof.
Please use your imagination!

Compiler Files

The files comprising the compiler itself should be collected in a directory compiler/ which should
contain a Makefile. Important: You should also update the README file and insert a description
of your code and algorithms used at the beginning of this file. Even though your code will not be
read for grading purposes, we may still read it to provide you feedback. The README will be crucial
information for this purpose.

Issuing the shell command

% make l2c

should generate the appropriate files so that

% bin/l2c <args>
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will run your L2 compiler. The command

% make clean

should remove all binaries, heaps, and other generated files.

Using the Subversion Repository

Handin and handout of material is via the course subversion repository.
The handout files for this course can be checked out from our subversion repository via

% svn checkout https://cvs.concert.cs.cmu.edu/15411-f10/<team>

where <team> is the name of your team. You will find materials for this lab in the lab2 subdirectory.
Or, if you have checked out 15411-f10/<team> directory before, you can issue the command
svn update in that directory.

After adding and committing your handin directory to the repository with svn add and svn commit

you can hand in your tests or compiler by selecting

S3 - Autograde your code in svn repository

from the Autolab server menu. It will perform one of

% svn checkout https://cvs.concert.cs.cmu.edu/15411-f10/<team>/lab2/tests

% svn checkout https://cvs.concert.cs.cmu.edu/15411-f10/<team>/lab2/compiler

to obtain the files directories to autograde, depending on whether you are handing in your test files
or your compiler.

If you are submitting multiple versions, please remember to commit your changes to the repos-
itory before asking the Autolab server to grade them! And please do not include an compiled files
or binaries in the repository!

What to Turn In

Hand in on the Autolab server:

• At least 20 test cases, at least two of which generate an error and at least two others raise a
runtime exception. The directory tests/ should only contain your test files and be submitted
via subversion as described above. The server will test your test files and notify you if there
is a discrepancy between your answer and the outcome of the reference implementation. You
may hand in as many times as you like before the deadline without penalty. If you feel the
reference implementation is in error, please notify the instructors. The compiled binary for
each test case should run in 2 seconds with the reference compiler on the lab machines; we
will use a 5 second limit for testing compilers.

Test cases are due 11:59pm on Tue Sep 21, 2010.
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• The complete compiler. The directory compiler/ should contain only the sources for your
compiler and be submitted via subversion. The Autolab server will build your compiler, run
it on all extant test files, link the resulting assembly files against our runtime system (if
compilation is successful), execute the binaries (each with a 5 second time limit), and finally
compare the actual with the expected results. You may hand in as many times as you like
before the deadline without penalty.

Compilers are due 11:59pm on Tue Sep 28, 2010.

8 Notes and Hints

Elaboration

Please take the recommended elaboration strategy seriously. It significantly streamlines your com-
piler and reducing the amount of work you do in each remaining pass of a multi-pass compiler.
Isolating elaboration also makes your source code more portable.

Static Checking

The specification of static checking should be implemented on abstract syntax trees, translating
the rules into code. You should take some care to produce useful error messages.

It may be tempting to wait until liveness analysis on abstract assembly to see if any variables are
live at the beginning of the program and signal an error then, rather than checking this directly on
the abstract syntax tree. There are two reasons to avoid this: (1) it may be difficult or impossible
to generate decent error messages, and (2) the intermediate representation might undergo some
transformations (for example, optimizations, or transforming logical operators into conditionals)
which make it difficult to be sure that the check strictly conforms to the given specification.

Calling Conventions

Your code must strictly adhere to the x86-64 calling conventions. For this lab, this just means that
your _l2_main function must make sure to save and restore any callee-save registers it uses, and
that the result must be returned in %eax.

Shift Operators

There are some tricky details on the machine instructions implementing the shift operators. The
instructions sall k,D (shift arithmetic left long) and sarl k,D (shift arithmetic right long) take
a shift value k and a destination operand D. The shift either has to be the %cl register, which
consists of the lowest 8 bits of %rcx, or can be given as an immediate of at most 8 bits. In either
case, only the low 5 bits affect the shift of a 32 bit value; the other bits are masked out. The
assembler will fail if an immediate of more than 8 bits is provided as an argument.

Run-time Environment

Refer to L1 .
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