
Assignment 1

Instruction Selection and Register Allocation

15-411: Compiler Design
Nathan Snyder (npsnyder@andrew) and Anand Subramanian(asubrama@andrew)

Due: Tuesday, September 7, 2010 (1:30 pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be all your own.
You may hand in a handwritten solution or a printout of a typeset solution at the beginning of lecture

on Tuesday, September 7. Please read the late policy for written assignments on the course web page. If
you decide not to typeset your answers, make sure the text and pictures are legible and clear.

Problem 1 (30 points)

(a) Consecutive statements in a program can be represented in an AST by a SEQ node that has two
statements (possibly other SEQs) as children. For example, the program

x = 5 + 3;
return x;

would be represented in an AST as

SEQ(ASSIGN(VAR(x), PLUS(CONST(5), CONST(3))), RETURN(VAR(x)))

Using this type of AST, write down (either as in the example or by drawing a real tree) the AST for
the following program

x = 4 - (2 + 5) * 8;
y = (x + 1) * 3;
return x - y;

(b) When we expand the capabilities of a programming language, we also need to extend the AST to
represent the new features. Write down the AST for the following program, choosing a reasonable
AST representation of the ”if” and ”==” constructs.

x = 2;
if (x == 0)

return 4;
else
{

x = 5;
return x;

}

1



(c) Now you will perform instruction selection on the AST you created in part (a) into three-operand
assembly language by using the patterns in the table below. As a sample, the example AST from part
(a) would be translated to

t0 <- 5
t1 <- 3
t2 <- t0 + t1
x <- t2
t3 <- x
return t3

We aren’t performing register allocation yet (that’s for problem 2), so we will continue to refer to
variables by their names and generate new temp variables (t0, ..., tn) as necessary. S1 and S2 refer to
the first and second subtrees of an AST node. Sninstrs refers to the instructions generated for Sn,
and Sntemp refers to a new temp variable created to hold the result of Sn in cases where Sn has one.
Lastly, r is the temp where the result of an expression should be placed.

Pattern Assembly
CONST(n) r <- n

VAR(x) r <- x

PLUS(S1, S2)
S1instrs, S2instrs,
r <- S1temp + S2temp

MINUS(S1, S2)
S1instrs, S2instrs,
r <- S1temp - S2temp

TIMES(S1, S2)
S1instrs, S2instrs,
r <- S1temp * S2temp

ASSIGN(VAR(x), S2)
S2instrs,
x <- S2result

RETURN(S1)
S1instrs,
return S1result

SEQ(S1, S2) S1instrs, S2instrs

(d) Now perform instruction selection on the AST you created in part (b). To accomplish this, we will
need to introduce ”cmpeq r x y”, label l”, ”jmp l”, and ”jmpnzero l x” into our assembly language,
where l is always a number that identifies a label. ”cmpeq r x y” assigns 1 to r if the values of x and
y are equal and 0 to r otherwise. In the case of jmpnzero, control flow jumps to label l if the value of
x is not 0. You will need to come up with your own patterns for generating instructions for ”if” and
”==” , and you must write down these patterns in addition to the specific program.

2



Problem 2 (30 points)

In this question you will perform the register allocation algorithm discussed in class on a small (and rather
bizarre) assembly program. The registers to be used are r1,...,rn so for the purposes of this question you
have as many registers as you need (though the algorithm will still be trying to use as few as possible). The
language used is the assembly from problem 1 with an additional division instruction, used as in ”ti ← tj /
tk”. As in x86 assembly, the division instruction has some special conditions associated with it; specifically,
tj must be assigned to register r0 and tk must be assigned to r1. A final consideration when allocating
registers is that in the instruction ”return ti”, ti must always be assigned to register r0.

t0 <- 2
t3 <- 4
t4 <- t3 - 2
t5 <- 6
t2 <- t5 / t4
t1 <- t2 * t3
label 1
t0 <- t0 * t1
t1 <- t1 - t2
t6 <- 9
jmpnzero 1 t1
return t0

(a) Compute the live variables at each instruction in the above program.

(b) Construct the interference graph for the program. If you don’t want to actually draw a graph, you can
just list the variables that each variable interferes with. You should also state whether the graph is
chordal.

(c) What problem does the current program have for allocating registers? Give a modified version of the
program that does not have this problem (you’re probably yearning to make the whole program less
hideous, but try to make the smallest change that allows register allocation).

(d) Use the chordal graph coloring algorithm discussed in class to allocate registers for all the temps in
the modified program. If you did part (c) correctly then your liveness analysis and interference graph
should still be usable with slight modification.

3


